Using machine learning to enhance and accelerate synthetic biology

被引:2
作者
Rai, Kshitij [1 ,3 ]
Wang, Yiduo [1 ,4 ]
O'Connell, Ronan W. [1 ,4 ]
Patel, Ankit B. [5 ,6 ]
Bashor, Caleb J. [1 ,2 ]
机构
[1] Rice Univ, Dept Bioengn, Houston, TX 77030 USA
[2] Rice Univ, Dept Biosci, Houston, TX 77030 USA
[3] Rice Univ, Grad Program Syst & Synthet Biol, Houston, TX 77030 USA
[4] Rice Univ, Grad Program Bioengn, Houston, TX 77030 USA
[5] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA
[6] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77030 USA
关键词
Synthetic biology; Machine learning; Artificial intelligence; Genetic cir-cuit design; Transfer learning; Active learning; Interpretable machine; DESIGN; GENOME; TRANSLATION; PREDICTION; PHENOTYPE; CHROMATIN; GENETICS; AGE;
D O I
10.1016/j.cobme.2024.100553
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Engineering synthetic regulatory circuits with precise remains encumbered by the inherent molecular complexity of cells. Non-linear, high-dimensional interactions between genetic parts and host cell machinery make it difficult to design circuits using first-principles biophysical models. We argue that adopting data-driven approaches that integrate modern machine learning (ML) tools and high-throughput experimental approaches into the synthetic biology design/build/test/learn process could dramatically accelerate the pace and scope of circuit design, yielding workflows that rapidly and systematically discern design principles and achieve quantitatively precise behavior. Current applications of ML to circuit design are occurring at three distinct scales: 1) learning relationships between part sequence and function; 2) determining how part function varies with genomic/host-cell context. This work points toward a future where ML-driven genetic design is used to program robust solutions to complex problems across diverse biotechnology domains.
引用
收藏
页数:15
相关论文
共 102 条
  • [1] Agarwal V., 2023, bioRxiv, p2023.03.05.531189
  • [2] Majority sensing in synthetic microbial consortia
    Alnahhas, Razan N.
    Sadeghpour, Mehdi
    Chen, Ye
    Frey, Alexis A.
    Ott, William
    Josic, Kresimir
    Bennett, Matthew R.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] A deep learning approach to programmable RNA switches
    Angenent-Mari, Nicolaas M.
    Garruss, Alexander S.
    Soenksen, Luis R.
    Church, George
    Collins, James J.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [4] Genome-Wide Quantitative Enhancer Activity Maps Identified by STARR-seq
    Arnold, Cosmas D.
    Gerlach, Daniel
    Stelzer, Christoph
    Boryn, Lukasz M.
    Rath, Martina
    Stark, Alexander
    [J]. SCIENCE, 2013, 339 (6123) : 1074 - 1077
  • [5] Effective gene expression prediction from sequence by integrating long-range interactions
    Avsec, Ziga
    Agarwal, Vikram
    Visentin, Daniel
    Ledsam, Joseph R.
    Grabska-Barwinska, Agnieszka
    Taylor, Kyle R.
    Assael, Yannis
    Jumper, John
    Kohli, Pushmeet
    Kelley, David R.
    [J]. NATURE METHODS, 2021, 18 (10) : 1196 - +
  • [6] Base-resolution models of transcription-factor binding reveal soft motif syntax
    Avsec, Ziga
    Weilert, Melanie
    Shrikumar, Avanti
    Krueger, Sabrina
    Alexandari, Amr
    Dalal, Khyati
    Fropf, Robin
    McAnany, Charles
    Gagneur, Julien
    Kundaje, Anshul
    Zeitlinger, Julia
    [J]. NATURE GENETICS, 2021, 53 (03) : 354 - +
  • [7] Accurate prediction of protein structures and interactions using a three-track neural network
    Baek, Minkyung
    DiMaio, Frank
    Anishchenko, Ivan
    Dauparas, Justas
    Ovchinnikov, Sergey
    Lee, Gyu Rie
    Wang, Jue
    Cong, Qian
    Kinch, Lisa N.
    Schaeffer, R. Dustin
    Millan, Claudia
    Park, Hahnbeom
    Adams, Carson
    Glassman, Caleb R.
    DeGiovanni, Andy
    Pereira, Jose H.
    Rodrigues, Andria V.
    van Dijk, Alberdina A.
    Ebrecht, Ana C.
    Opperman, Diederik J.
    Sagmeister, Theo
    Buhlheller, Christoph
    Pavkov-Keller, Tea
    Rathinaswamy, Manoj K.
    Dalwadi, Udit
    Yip, Calvin K.
    Burke, John E.
    Garcia, K. Christopher
    Grishin, Nick V.
    Adams, Paul D.
    Read, Randy J.
    Baker, David
    [J]. SCIENCE, 2021, 373 (6557) : 871 - +
  • [8] Synthetic Biology: Engineering Living Systems from Biophysical Principles
    Bartley, Bryan A.
    Kim, Kyung
    Medley, J. Kyle
    Sauro, Herbert M.
    [J]. BIOPHYSICAL JOURNAL, 2017, 112 (06) : 1050 - 1058
  • [9] Engineering the next generation of cell-based therapeutics
    Bashor, Caleb J.
    Hilton, Isaac B.
    Bandukwala, Hozefa
    Smith, Devyn M.
    Veiseh, Omid
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2022, 21 (09) : 655 - 675
  • [10] Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies
    Bashor, Caleb J.
    Patel, Nikit
    Choubey, Sandeep
    Beyzavi, Ali
    Kondev, Jane
    Collins, James J.
    Khalil, Ahmad S.
    [J]. SCIENCE, 2019, 364 (6440) : 593 - +