Berry Curvature Induced Valley Hall Effect in Non-Encapsulated hBN/Bilayer Graphene Heterostructure Aligned with Near-Zero Twist Angle

被引:0
作者
Shintaku, Teppei [1 ]
Kareekunnan, Afsal [1 ]
Akabori, Masashi [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [2 ]
Mizuta, Hiroshi [1 ]
机构
[1] Japan Adv Inst Sci & Technol, 1-1 Asahidai, Nomi 9231292, Japan
[2] Natl Inst Mat Sci NIMS, 1-1 Namiki, Tsukuba 3050044, Japan
来源
ADVANCED PHYSICS RESEARCH | 2024年 / 3卷 / 01期
关键词
bilayer graphene; hBN; valleytronics; TRANSITION; CURRENTS;
D O I
10.1002/apxr.202300064
中图分类号
O59 [应用物理学];
学科分类号
摘要
Valley Hall effect is observed in asymmetric single-layer and bilayer graphene systems. In single-layer graphene systems, asymmetry is introduced by aligning graphene with hexagonal boron nitride (hBN) with a near-zero twist angle, breaking the sub-lattice symmetry. Although a similar approach is used in bilayer graphene to break the layer symmetry and thereby observe the valley Hall effect, the bilayer graphene is sandwiched with hBN on both sides in those studies. This study looks at a much simpler, non-encapsulated structure where hBN is present only at the top of graphene. The crystallographic axes of both hBN and bilayer graphene are aligned. A clear signature of the valley Hall effect through non-local resistance measurement (RNL) is observed. The observed non-local resistance can be manipulated by applying a displacement field across the heterostructure. Furthermore, the electronic band structure and Berry curvature calculations validate the experimental observations. This study details the observation of the valley Hall effect in non-encapsulated hBN/bilayer graphene heterostructure (hBN/bilayer graphene/SiO2) where the hBN and bilayer graphene are aligned with near zero-twist angle. Aligning bilayer graphene with hBN gives rise to a global bandgap and a finite Berry curvature, leading to the valley Hall effect. image
引用
收藏
页数:6
相关论文
共 28 条
  • [21] One-Dimensional Electrical Contact to a Two-Dimensional Material
    Wang, L.
    Meric, I.
    Huang, P. Y.
    Gao, Q.
    Gao, Y.
    Tran, H.
    Taniguchi, T.
    Watanabe, K.
    Campos, L. M.
    Muller, D. A.
    Guo, J.
    Kim, P.
    Hone, J.
    Shepard, K. L.
    Dean, C. R.
    [J]. SCIENCE, 2013, 342 (6158) : 614 - 617
  • [22] Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation
    Wang, Xinjie
    Yates, Jonathan R.
    Souza, Ivo
    Vanderbilt, David
    [J]. PHYSICAL REVIEW B, 2006, 74 (19)
  • [23] Composite super-moire lattices in double-aligned graphene heterostructures
    Wang, Zihao
    Wang, Yi Bo
    Yin, J.
    Tovari, E.
    Yang, Y.
    Lin, L.
    Holwill, M.
    Birkbeck, J.
    Perello, D. J.
    Xu, Shuigang
    Zultak, J.
    Gorbachev, R. V.
    Kretinin, A. V.
    Taniguchi, T.
    Watanabe, K.
    Morozov, S. V.
    Andelkovic, M.
    Milovanovic, S. P.
    Covaci, L.
    Peeters, F. M.
    Mishchenko, A.
    Geim, A. K.
    Novoselov, K. S.
    Fal'ko, Vladimir I.
    Knothe, Angelika
    Woods, C. R.
    [J]. SCIENCE ADVANCES, 2019, 5 (12)
  • [24] Woods CR, 2014, NAT PHYS, V10, P451, DOI [10.1038/nphys2954, 10.1038/NPHYS2954]
  • [25] Xu XD, 2014, NAT PHYS, V10, P343, DOI [10.1038/NPHYS2942, 10.1038/nphys2942]
  • [26] van der Waals heterostructures combining graphene and hexagonal boron nitride
    Yankowitz, Matthew
    Ma, Qiong
    Jarillo-Herrero, Pablo
    LeRoy, Brian J.
    [J]. NATURE REVIEWS PHYSICS, 2019, 1 (02) : 112 - 125
  • [27] Yankowitz M, 2012, NAT PHYS, V8, P382, DOI [10.1038/NPHYS2272, 10.1038/nphys2272]
  • [28] Direct observation of a widely tunable bandgap in bilayer graphene
    Zhang, Yuanbo
    Tang, Tsung-Ta
    Girit, Caglar
    Hao, Zhao
    Martin, Michael C.
    Zettl, Alex
    Crommie, Michael F.
    Shen, Y. Ron
    Wang, Feng
    [J]. NATURE, 2009, 459 (7248) : 820 - 823