Berry Curvature Induced Valley Hall Effect in Non-Encapsulated hBN/Bilayer Graphene Heterostructure Aligned with Near-Zero Twist Angle

被引:0
作者
Shintaku, Teppei [1 ]
Kareekunnan, Afsal [1 ]
Akabori, Masashi [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [2 ]
Mizuta, Hiroshi [1 ]
机构
[1] Japan Adv Inst Sci & Technol, 1-1 Asahidai, Nomi 9231292, Japan
[2] Natl Inst Mat Sci NIMS, 1-1 Namiki, Tsukuba 3050044, Japan
来源
ADVANCED PHYSICS RESEARCH | 2024年 / 3卷 / 01期
关键词
bilayer graphene; hBN; valleytronics; TRANSITION; CURRENTS;
D O I
10.1002/apxr.202300064
中图分类号
O59 [应用物理学];
学科分类号
摘要
Valley Hall effect is observed in asymmetric single-layer and bilayer graphene systems. In single-layer graphene systems, asymmetry is introduced by aligning graphene with hexagonal boron nitride (hBN) with a near-zero twist angle, breaking the sub-lattice symmetry. Although a similar approach is used in bilayer graphene to break the layer symmetry and thereby observe the valley Hall effect, the bilayer graphene is sandwiched with hBN on both sides in those studies. This study looks at a much simpler, non-encapsulated structure where hBN is present only at the top of graphene. The crystallographic axes of both hBN and bilayer graphene are aligned. A clear signature of the valley Hall effect through non-local resistance measurement (RNL) is observed. The observed non-local resistance can be manipulated by applying a displacement field across the heterostructure. Furthermore, the electronic band structure and Berry curvature calculations validate the experimental observations. This study details the observation of the valley Hall effect in non-encapsulated hBN/bilayer graphene heterostructure (hBN/bilayer graphene/SiO2) where the hBN and bilayer graphene are aligned with near zero-twist angle. Aligning bilayer graphene with hBN gives rise to a global bandgap and a finite Berry curvature, leading to the valley Hall effect. image
引用
收藏
页数:6
相关论文
共 28 条
  • [1] Giant Nonlocality Near the Dirac Point in Graphene
    Abanin, D. A.
    Morozov, S. V.
    Ponomarenko, L. A.
    Gorbachev, R. V.
    Mayorov, A. S.
    Katsnelson, M. I.
    Watanabe, K.
    Taniguchi, T.
    Novoselov, K. S.
    Levitov, L. S.
    Geim, A. K.
    [J]. SCIENCE, 2011, 332 (6027) : 328 - 330
  • [2] Arrighi E, 2022, Arxiv, DOI arXiv:2205.01760
  • [3] Hofstadter's butterfly and the fractal quantum Hall effect in moire superlattices
    Dean, C. R.
    Wang, L.
    Maher, P.
    Forsythe, C.
    Ghahari, F.
    Gao, Y.
    Katoch, J.
    Ishigami, M.
    Moon, P.
    Koshino, M.
    Taniguchi, T.
    Watanabe, K.
    Shepard, K. L.
    Hone, J.
    Kim, P.
    [J]. NATURE, 2013, 497 (7451) : 598 - 602
  • [4] Van der Waals density functional for general geometries -: art. no. 246401
    Dion, M
    Rydberg, H
    Schröder, E
    Langreth, DC
    Lundqvist, BI
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (24) : 246401 - 1
  • [5] Topological valley currents in bilayer graphene/hexagonal boron nitride superlattices
    Endo, Kosuke
    Komatsu, Katsuyoshi
    Iwasaki, Takuya
    Watanabe, Eiichiro
    Tsuya, Daiju
    Watanabe, Kenji
    Taniguchi, Takashi
    Noguchi, Yutaka
    Wakayama, Yutaka
    Morita, Yoshifumi
    Moriyama, Satoshi
    [J]. APPLIED PHYSICS LETTERS, 2019, 114 (24)
  • [6] Detecting topological currents in graphene superlattices
    Gorbachev, R. V.
    Song, J. C. W.
    Yu, G. L.
    Kretinin, A. V.
    Withers, F.
    Cao, Y.
    Mishchenko, A.
    Grigorieva, I. V.
    Novoselov, K. S.
    Levitov, L. S.
    Geim, A. K.
    [J]. SCIENCE, 2014, 346 (6208) : 448 - 451
  • [7] Manipulating Berry curvature in hBN/bilayer graphene commensurate heterostructures
    Kareekunnan, Afsal
    Muruganathan, Manoharan
    Mizuta, Hiroshi
    [J]. PHYSICAL REVIEW B, 2020, 101 (19)
  • [8] Observation of the quantum valley Hall state in ballistic graphene superlattices
    Komatsu, Katsuyosih
    Morita, Yoshifumi
    Watanabe, Eiichiro
    Tsuya, Daiju
    Watanabe, Kenji
    Taniguchi, Takashi
    Moriyama, Satoshi
    [J]. SCIENCE ADVANCES, 2018, 4 (05):
  • [9] Topological valley currents via ballistic edge modes in graphene superlattices near the primary Dirac point
    Li, Yang
    Amado, Mario
    Hyart, Timo
    Mazur, Grzegorz P.
    Robinson, Jason W. A.
    [J]. COMMUNICATIONS PHYSICS, 2020, 3 (01)
  • [10] Asymmetry gap in the electronic band structure of bilayer graphene
    McCann, Edward
    [J]. PHYSICAL REVIEW B, 2006, 74 (16):