Investigation on the moderately high-temperature tensile behavior of the laser powder bed fusion-fabricated 17-4 PH steel

被引:0
|
作者
Li, Qinghua [1 ]
Zhu, Xiaoqing [1 ]
Yang, Laishan [2 ]
Ma, Rui [3 ]
Zhou, Shouzhen [3 ]
Wang, Han [1 ]
Han, Fang [1 ]
Zhang, Zhihang [1 ]
Li, Chengkun [1 ]
Wang, Chengcheng [1 ]
Dong, Zhibo [1 ]
机构
[1] Harbin Inst Technol, Natl Key Lab Precis Welding & Joining Mat & Struct, Harbin 150001, Peoples R China
[2] Jinxi Ind Grp CO LTD, Taiyuan 030032, Peoples R China
[3] Beijing Power Machinery Inst, Beijing 100000, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2024年 / 915卷
基金
中国国家自然科学基金;
关键词
Powder bed fusion; 17-4H stainless steel; High temperature; Post treatment; Molecular dynamics; MECHANICAL-PROPERTIES; STAINLESS-STEEL; MICROSTRUCTURE; EVOLUTION;
D O I
10.1016/j.msea.2024.147221
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The as-built 17-4 PH steel manufactured by powder bed fusion (PBF) generally requires solution and aging post heat treatments to improve performance and meet service requirements. This is because the Cu-rich phase in the microstructure has no time to precipitate and grow due to the high cooling rate of the PBF process. In this study, high-temperature tensile tests were conducted on as-built specimens along horizontal and vertical directions and the specimens with direct-aging and solution-aging heat treatments at 450-550 degrees C and different strain rates. The results show that when the temperature is between 450 and 500 degrees C, the high-temperature tensile properties of the as-built PBF 17-4 PH stainless steel specimens are comparable to or even better than those of the heat-treated specimens. The growth of the Cu-rich phase during the high-temperature tensile process is key to the results. Molecular dynamics simulation results show that crystal defects generated during the high-temperature tensile process significantly promote the formation and growth of Cu clusters. In addition, the grain morphology, the sizes and distributions of the Cu-rich phase and Si-Mn inclusions, and the grain boundary (GB) strength affect together the fracture modes of the four specimens under high temperatures. When the temperature was 550 degrees C, the tensile strengths of all specimens are limited by the coarser Cu-rich phase, the larger Si-Mn inclusion and the more severe migration of GB. The study shows the potential for the direct use of the as-built 17-4 PH steel in service environment characterized by short duration and high temperature such as missile launchers. The idea also improves significantly their application capacity of other similar PBF-ed alloys by avoiding the cost of post heat treatment.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] High-temperature fracture behavior of an α /(3 Titanium alloy manufactured using laser powder bed fusion
    Xie, Meishen
    Huang, Sheng
    Wang, Zhi
    Ramamurty, Upadrasta
    ACTA MATERIALIA, 2024, 277
  • [32] High temperature high strength austenitic steel fabricated by laser powder-bed fusion
    Dryepondt, Sebastien
    Nandwana, Peeyush
    Unocic, Kinga A.
    Kannan, Rangasayee
    Zelaia, Patxi Fernandez
    List, Fred A., III
    ACTA MATERIALIA, 2022, 231
  • [33] Influence of scanning strategies on microstructure, residual stress, and corrosion behavior of 17-4 PH stainless steel fabricated by selective laser melting
    Sarma, I. Kartikeya
    Selvaraj, N.
    Kumar, Adepu
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2023, 237 (03) : 690 - 701
  • [34] Microstructure and Deformation Behavior of Additively Manufactured 17-4 Stainless Steel: Laser Powder Bed Fusion vs. Laser Powder Directed Energy Deposition
    Nezhadfar, P. D.
    Gradl, Paul R.
    Shao, Shuai
    Shamsaei, Nima
    JOM, 2022, 74 (03) : 1136 - 1148
  • [35] Influence of frequency on high-temperature fatigue behavior of 17-4 PH stainless steels
    Wu, JH
    Lin, CK
    MATERIALS TRANSACTIONS, 2003, 44 (04) : 713 - 721
  • [36] Improving the microstructure and mechanical properties of laser powder bed fusion-fabricated tantalum by high laser energy density
    Du, Jingguang
    Ren, Yaojia
    Zhang, Mingming
    Liang, Luxin
    Chen, Chao
    Zhou, Kechao
    Liu, Xinyan
    Xu, Feng
    Baker, Ian
    Wu, Hong
    MATERIALS LETTERS, 2023, 333
  • [37] Effects of Powder Attributes and Laser Powder Bed Fusion (L-PBF) Process Conditions on the Densification and Mechanical Properties of 17-4 PH Stainless Steel
    Irrinki, Harish
    Dexter, Michael
    Barmore, Brenton
    Enneti, Ravi
    Pasebani, Somayeh
    Badwe, Sunil
    Stitzel, Jason
    Malhotra, Rajiv
    Atre, Sundarv
    JOM, 2016, 68 (03) : 860 - 868
  • [38] Tensile properties and microstructural evolution of 17-4 PH stainless steel fabricated by laser hybrid additive manufacturing technology
    Li, Nan
    Wang, Qiang
    Bermingham, Michael
    Niu, Wenjuan
    Han, Peng
    Guo, Nan
    Li, Shenao
    INTERNATIONAL JOURNAL OF PLASTICITY, 2024, 173
  • [39] Effect of Post-treatments on the Thermomechanical Behavior of NiTiHf High-Temperature Shape Memory Alloy Fabricated with Laser Powder Bed Fusion
    Cullaz, Timothee
    Nematollahi, Mohammadreza
    Safaei, Keyvan
    Saint-Sulpice, Luc
    Pino, Laurent
    Vanaei, Saeedeh
    Jamshidi, Parastoo
    Attallah, Moataz
    Benafan, Othmane
    Arbab Chirani, Shabnam
    Elahinia, Mohammad
    SHAPE MEMORY AND SUPERELASTICITY, 2024, 10 (01) : 45 - 54
  • [40] High-temperature tensile properties of an aluminum quasicrystal-forming alloy manufactured by laser powder bed fusion
    de Araujo, Aylanna P. M.
    Kiminami, Claudio S.
    Uhlenwinkel, Volker
    Gargarella, Piter
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 886