Structure-Based Drug Design with a Deep Hierarchical Generative Model

被引:1
作者
Weller, Jesse A. [1 ,2 ]
Rohs, Remo [1 ,3 ,4 ]
机构
[1] Univ Southern Calif, Dept Quantitat & Computat Biol, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[3] Univ Southern Calif, Dept Phys & Astron, Dept Chem, Los Angeles, CA 90089 USA
[4] Univ Southern Calif, Thomas Lord Dept Comp Sci, Los Angeles, CA 90089 USA
基金
美国国家卫生研究院;
关键词
INTERFERENCE COMPOUNDS PAINS; POTENT INHIBITOR; FORCE-FIELD; DOCKING; OPTIMIZATION; EXPLORATION; DISCOVERY; ACCURACY; DATABASE; ART;
D O I
10.1021/acs.jcim.4c01193
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Recently, the remarkable growth of available crystal structure data and libraries of commercially available or readily synthesizable molecules have unlocked previously inaccessible regions of chemical space for drug development. Paired with improvements in virtual ligand screening methods, these expanded libraries are having a notable impact on early drug design efforts. Yet screening-based methods still face scalability limits, due to computational constraints and the sheer scale of drug-like space. Machine learning approaches are overcoming these limitations by learning the fundamental intra- and intermolecular relationships in drug-target systems from existing data. Here, we introduce DrugHIVE, a deep hierarchical variational autoencoder that outperforms state-of-the-art autoregressive and diffusion-based methods in both speed and performance on common generative benchmarks. DrugHIVE's hierarchical design enables improved control over molecular generation. Its capabilities include dramatically increasing virtual screening efficiency and accelerating a wide range of common drug design tasks, including de novo generation, molecular optimization, scaffold hopping, linker design, and high-throughput pattern replacement. Our highly scalable method can even be applied to receptors with high-confidence AlphaFold-predicted structures, extending the ability to generate high-quality drug-like molecules to a majority of the unsolved human proteome.
引用
收藏
页码:6450 / 6463
页数:14
相关论文
共 77 条
  • [61] Schutt K. T., 2017, ADV NEURAL INFORM PR, P992
  • [62] AiZynth impact on medicinal chemistry practice at AstraZeneca
    Shields, Jason D.
    Howells, Rachel
    Lamont, Gillian
    Leilei, Yin
    Madin, Andrew
    Reimann, Christopher E.
    Rezaei, Hadi
    Reuillon, Tristan
    Smith, Bryony
    Thomson, Clare
    Zheng, Yuting
    Ziegler, Robert E.
    [J]. RSC MEDICINAL CHEMISTRY, 2024, 15 (04): : 1085 - 1095
  • [63] Why 90 % of clinical drug development fails and how to improve it?
    Sun, Duxin
    Gao, Wei
    Hu, Hongxiang
    Zhou, Simon
    [J]. ACTA PHARMACEUTICA SINICA B, 2022, 12 (07) : 3049 - 3062
  • [64] Generative AI for designing and validating easily synthesizable and structurally novel antibiotics
    Swanson, Kyle
    Liu, Gary
    Catacutan, Denise B.
    Arnold, Autumn
    Zou, James
    Stokes, Jonathan M.
    [J]. NATURE MACHINE INTELLIGENCE, 2024, 6 (03) : 338 - 353
  • [65] Valence bond theory for chemical dynamics
    Truhlar, Donald G.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2007, 28 (01) : 73 - 86
  • [66] Highly accurate protein structure prediction for the human proteome
    Tunyasuvunakool, Kathryn
    Adler, Jonas
    Wu, Zachary
    Green, Tim
    Zielinski, Michal
    Zidek, Augustin
    Bridgland, Alex
    Cowie, Andrew
    Meyer, Clemens
    Laydon, Agata
    Velankar, Sameer
    Kleywegt, Gerard J.
    Bateman, Alex
    Evans, Richard
    Pritzel, Alexander
    Figurnov, Michael
    Ronneberger, Olaf
    Bates, Russ
    Kohl, Simon A. A.
    Potapenko, Anna
    Ballard, Andrew J.
    Romera-Paredes, Bernardino
    Nikolov, Stanislav
    Jain, Rishub
    Clancy, Ellen
    Reiman, David
    Petersen, Stig
    Senior, Andrew W.
    Kavukcuoglu, Koray
    Birney, Ewan
    Kohli, Pushmeet
    Jumper, John
    Hassabis, Demis
    [J]. NATURE, 2021, 596 (7873) : 590 - +
  • [67] Vahdat A., 2020, ADV NEURAL INFORM PR, P19667
  • [68] Structure-Based Exploration of Selectivity for ATM Inhibitors in Huntington's Disease
    Van de Poel, Amanda
    Toledo-Sherman, Leticia
    Breccia, Perla
    Cachope, Roger
    Bate, Jennifer R.
    Angulo-Herrera, Ivan
    Wishart, Grant
    Matthews, Kim L.
    Martin, Sarah L.
    Peacock, Marcus
    Barnard, Amy
    Cox, Helen C.
    Jones, Graham
    McAllister, George
    Vater, Huw
    Esmieu, William
    Clissold, Cole
    Lamers, Marieke
    Leonard, Philip
    Jarvis, Rebecca E.
    Blackaby, Wesley
    Eznarriaga, Maria
    Lazari, Ovadia
    Yates, Dawn
    Rose, Mark
    Jang, Sung-Wook
    Munoz-Sanjuan, Ignacio
    Dominguez, Celia
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2021, 64 (08) : 5018 - 5036
  • [69] AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models
    Varadi, Mihaly
    Anyango, Stephen
    Deshpande, Mandar
    Nair, Sreenath
    Natassia, Cindy
    Yordanova, Galabina
    Yuan, David
    Stroe, Oana
    Wood, Gemma
    Laydon, Agata
    Zidek, Augustin
    Green, Tim
    Tunyasuvunakool, Kathryn
    Petersen, Stig
    Jumper, John
    Clancy, Ellen
    Green, Richard
    Vora, Ankur
    Lutfi, Mira
    Figurnov, Michael
    Cowie, Andrew
    Hobbs, Nicole
    Kohli, Pushmeet
    Kleywegt, Gerard
    Birney, Ewan
    Hassabis, Demis
    Velankar, Sameer
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) : D439 - D444
  • [70] Rapid automated iterative small-molecule synthesis
    Wang, Wesley
    Angello, Nicholas H.
    Blair, Daniel J.
    Tyrikos-Ergas, Theodore
    Krueger, William H.
    Medine, Kameron N. S.
    Laporte, Antonio J.
    Berger, Joshua M.
    Burke, Martin D.
    [J]. NATURE SYNTHESIS, 2024, 3 (08): : 1031 - 1038