Application of Machine Learning in Credit Card Fraud Detection: A Case Study of F Bank

被引:0
|
作者
Lin, Yuan-Fa [1 ]
Wang, Chou-Wen [1 ]
Wu, Chin-Wen [2 ]
机构
[1] Natl Sun Yat Sen Univ, Kaohsiung, Taiwan
[2] Nanhua Univ, Dalin, Chiayi County, Taiwan
来源
HCI IN BUSINESS, GOVERNMENT AND ORGANIZATIONS, PT I, HCIBGO 2024 | 2024年 / 14720卷
关键词
Credit Card Fraud Detection; Machine Learning; Logistic Regression; Random Forest; Extreme Gradient Boosting;
D O I
10.1007/978-3-031-61315-9_15
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the Covid-19 pandemic, people are increasingly engaging in non-face-to-face credit card transactions in their daily lives. However, this trend has also provided opportunities for malicious actors to obtain customer credit card information through various illicit means, leading to a continuous rise in credit card fraud. Traditional fraud detection methods, relying on extensive rules and manual judgment, struggle to effectively prevent the evolving techniques of fraud and often result in significant false positives, requiring substantial time for transaction verification. In recent years, the development of big data and machine learning algorithms has offered an effective solution to this challenge. This study employs three common machine learning algorithms-Logistic Regression, Random Forest, and Extreme Gradient Boosting-for predicting credit card fraud. Utilizing transaction data from Bank F time period from January 2021 to May 2023, including fields such as transaction ID, credit limit, occupation, transaction date, transaction time, transaction amount, etc., the study addresses the issue of imbalanced data in credit card fraud through sampling methods. Different ratios of normal to fraud samples, coupled with varying sampling frequencies, are employed along with ensemble learning techniques to enhance the accuracy and stability of the predictive model. Subsequently, various commonly used machine learning evaluation metrics are applied to identify the best model. The empirical results indicate that the Extreme Gradient Boosting model performs best in detecting credit card fraud. In scenarios with different sampling ratios of normal to fraud samples, the study identifies key features such as changes in the cardholder's transaction behavior concerning transaction region, frequency, and amount. The results of this study provide the bank with references on how to develop more effective strategies for fraud prevention.
引用
收藏
页码:210 / 222
页数:13
相关论文
共 50 条
  • [1] Credit Card Fraud Detection Based on Machine and Deep Learning
    Najadat, Hassan
    Altiti, Ola
    Abu Aqouleh, Ayah
    Younes, Mutaz
    2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 204 - 208
  • [2] Credit Card Fraud Detection - Machine Learning methods
    Varmedja, Dejan
    Karanovic, Mirjana
    Sladojevic, Srdjan
    Arsenovic, Marko
    Anderla, Andras
    2019 18TH INTERNATIONAL SYMPOSIUM INFOTEH-JAHORINA (INFOTEH), 2019,
  • [3] Credit Card Fraud Intelligent Detection Based on Machine Learning
    Mu, Duojiao
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1112 - 1117
  • [4] Credit card fraud detection using machine learning algorithms
    de Souza, Daniel H. M.
    Bordin Jr, Claudio J.
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2023, 15 (01): : 1 - 11
  • [5] Scalable Machine Learning Techniques for Highly Imbalanced Credit Card Fraud Detection: A Comparative Study
    Mohammed, Rafiq Ahmed
    Wong, Kok-Wai
    Shiratuddin, Mohd Fairuz
    Wang, Xuequn
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2018, 11013 : 237 - 246
  • [6] Machine Learning Model for Credit Card Fraud Detection- A Comparative Analysis
    Sharma, Pratyush
    Banerjee, Souradeep
    Tiwari, Devyanshi
    Patni, Jagdish Chandra
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2021, 18 (06) : 789 - 796
  • [7] Credit Card Fraud Detection with Machine Learning Methods
    Goy, Gokhan
    Gezer, Cengiz
    Gungor, Vehbi Cagri
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 350 - 354
  • [8] Credit Card Fraud Detection Using Machine Learning
    Sailusha, Ruttala
    Gnaneswar, V
    Ramesh, R.
    Rao, G. Ramakoteswara
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1264 - 1270
  • [9] Credit Card Fraud Detection Based on Machine Learning
    Fang, Yong
    Zhang, Yunyun
    Huang, Cheng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 61 (01): : 185 - 195
  • [10] Comprehensive Analysis for Fraud Detection of Credit Card through Machine Learning
    Roy, Parth
    Rao, Prateek
    Gajre, Jay
    Katake, Kanchan
    Jagtap, Arvind
    Gajmal, Yogesh
    2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 765 - 769