Certain paracontact metrics satisfying gradient ρ-Ricci-Bourguignon almost solitons

被引:0
作者
Dey, Santu [1 ]
Ali, Akram [2 ]
机构
[1] Bidhan Chandra Coll, Dept Math, Asansol 713304, West Bengal, India
[2] King Khalid Univ, Dept Math, Abha 62529, Saudi Arabia
关键词
Para-Sasakian manifold; (kappa; mu)-paracontact manifold; paracontact metric manifolds; rho-Ricci-Bourguignon almost soliton; Einstein manifold; harmonic vector field; 2ND-ORDER PARALLEL TENSORS; ETA-RICCI; EINSTEIN; MANIFOLDS; GEOMETRY;
D O I
10.1142/S0219887824502888
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we thoroughly study rho-Ricci-Bourguignon almost soliton and gradient rho-Ricci-Bourguignon almost soliton in the paracontact geometry, precisely, on K-paracontact and para-Sasakian manifolds. Here, we prove that if the metric g of the K-paracontact manifold endows a rho-Ricci-Bourguignon almost soliton with the nonzero potential vector field V parallel to xi, then the manifold is an Einstein with Einstein constant -2n. Next, we show that if a para-Sasakian manifold represents a gradient rho-Ricci-Bourguignon almost soliton, then the manifold is an Einstein with constant scalar curvature -2n(2n + 1). We also discuss rho-Ricci-Bourguignon almost soliton on (kappa,mu)-paracontact manifold.
引用
收藏
页数:19
相关论文
共 59 条
[1]  
[Anonymous], 1970, J. Differ. Geom.
[2]  
Bejan CL, 2014, ANN GLOB ANAL GEOM, V46, P117, DOI 10.1007/s10455-014-9414-4
[3]  
Blair D. E., 2002, PROGR MATH, V203, pxii+260, DOI [10.1007/978-1-4757-3604-5, DOI 10.1007/978-1-4757-3604-5]
[4]  
Bourguignon J.-P., 1981, Lecture Notes in Math., V838, P42
[5]   HOMOGENEOUS PARACONTACT METRIC THREE-MANIFOLDS [J].
Calvaruso, G. .
ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (02) :697-718
[6]   Ricci solitons in three-dimensional paracontact geometry [J].
Calvaruso, Giovanni ;
Perrone, Antonella .
JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 :1-12
[7]   Nullity conditions in paracontact geometry [J].
Cappelletti Montano, B. ;
Erken, I. Kupeli ;
Murathan, C. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2012, 30 (06) :665-693
[8]   Sasaki-Einstein and paraSasaki-Einstein metrics from (κ, μ)-structures [J].
Cappelletti-Montano, Beniamino ;
Carriazo, Alfonso ;
Martin-Molina, Veronica .
JOURNAL OF GEOMETRY AND PHYSICS, 2013, 73 :20-36
[9]   RICCI-BOURGUIGNON SOLITONS AND FISCHER-MARSDEN CONJECTURE ON GENERALIZED SASAKIAN-SPACE-FORMS WITH β-KENMOTSU STRUCTURE [J].
Chaubey, Sudhakar Kumar ;
Suh, Young Jin .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (02) :341-358
[10]   CONTACT GEOMETRY AND RICCI SOLITONS [J].
Cho, Jong Taek ;
Sharma, Ramesh .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (06) :951-960