Investigation on Cooling Performance of Composite PCM and Graphite Fin for Battery Thermal Management System of Electric Vehicles

被引:2
|
作者
Mane, Nikhil S. [1 ]
Kodancha, Pradyumna [1 ]
Hemadri, Vadiraj [1 ]
Tripathi, Siddhartha [1 ]
机构
[1] BITS Pilani K K Birla Goa Campus, Dept Mech Engn, Sancoale, Goa, India
关键词
battery cooling; composite PCM; electric vehicles; fin; phase change materials; PHASE-CHANGE MATERIALS; ENERGY STORAGE;
D O I
10.1002/est2.70024
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Modern electric vehicle (EV) batteries need phase change materials (PCM) that are capable of efficient battery cooling. In this work, a composite PCM is prepared by mixing Fe3O4 nanoparticles (1 wt.%) in paraffin, and the effects of these nanoparticles on the enthalpy and melting point of PCM are studied. It is found that the Fe3O4 nanoparticle additives reduce the onset of melting from 61.46 degrees C to 57.03 degrees C. The composite PCM is used for the cooling of a battery module of 6 substitute-18 650 batteries, and the cooling performance is experimentally and numerically investigated. The hybrid battery thermal management system (BTMS) utilizing composite paraffin demonstrates a significant reduction of 11.2 degrees C in lithium-ion battery (LIB) temperature compared with natural convection cooling at a heat generation rate of 2W. The numerical results in this study are in good agreement with the experimental temperature values, with a modest mean absolute error of 1.35 degrees C detected between experimentally obtained and simulated battery temperature values. In order to deal with the low thermal conductivity of liquid PCM after PCM melting, a numerical investigation is conducted to study the effect of a graphite fin on the battery temperature. The use of a fin in hybrid BTMS considerably reduces the temperature of LIBs and temperature difference in the module. The numerical simulations capture the behavior of the phase change phenomenon, showing the evolution of liquid PCM under constant heating. This work presents the dynamic melting patterns of PCM along the length of LIB with and without a fin, which is useful for the effective design of BTMS.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Energy consumption optimisation of a battery thermal management system for electric vehicles considering different cooling modes
    Hu, Yunfeng
    Deng, Nuo
    Gong, Xun
    Sun, Yao
    Chen, Hong
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2023, 92 (2-4) : 128 - 148
  • [32] Modeling and Model Predictive Control of a Battery Thermal Management System Based on Thermoelectric Cooling for Electric Vehicles
    Wang, Ruochen
    Zhang, Hui
    Chen, Jie
    Ding, Renkai
    Luo, Ding
    ENERGY TECHNOLOGY, 2024, 12 (05)
  • [33] Research on Control Strategy for a Battery Thermal Management System for Electric Vehicles Based on Secondary Loop Cooling
    Kuang, Xijin
    Li, Kuining
    Xie, Yi
    Wu, Cunxue
    Wang, Pingzhong
    Wang, Xiaobo
    Fu, Chunyun
    IEEE ACCESS, 2020, 8 : 73475 - 73493
  • [34] Numerical Investigation of Cooling Performance of Liquid-cooled Battery in Electric Vehicles
    Kwon, Hwabhin
    Park, Heesung
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2016, 40 (06) : 403 - 408
  • [35] Simulation analysis of battery thermal management system for electric vehicles based on direct cooling cycle optimization
    Wang, Ceyi
    Chen, Zhengxian
    Shen, Yang
    Li, Jun
    APPLIED THERMAL ENGINEERING, 2025, 268
  • [36] A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles
    Zhao, Gang
    Wang, Xiaolin
    Negnevitsky, Michael
    Zhang, Hengyun
    JOURNAL OF POWER SOURCES, 2021, 501
  • [37] A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM
    Murali, G.
    Sravya, G. S. N.
    Jaya, J.
    Vamsi, V. Naga
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 150
  • [38] Experimental and Numerical Investigation of the Thermal Performance of a Hybrid Battery Thermal Management System for an Electric Van
    Pra, Franck
    Al Koussa, Jad
    Ludwig, Sebastian
    De Servi, Carlo M.
    BATTERIES-BASEL, 2021, 7 (02):
  • [39] Battery management system for electric vehicles
    Liu, Xiaokang
    Zhan, Qionghua
    He, Kui
    Shu, Yuehong
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2007, 35 (08): : 83 - 86
  • [40] Coupling optimization of protruding fin and PCM in hybrid cooling system and cycle strategy matching for lithium-ion battery thermal management
    Liu, Zhenwei
    Huadan, Cairang
    Wang, Boyuan
    Li, Ping
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2025, 207