Water gradient manipulation through the polymer electrolyte membrane of an operating microfluidic water electrolyzer

被引:1
|
作者
Krause, Kevin [1 ,2 ]
Crete-Laurence, Adele [1 ,2 ]
Michau, Dominique [3 ]
Clisson, Gerald [4 ]
Battaglia, Jean-Luc [1 ,2 ]
Chevalier, Stephane [1 ,2 ]
机构
[1] Univ Bordeaux, CNRS, UMR 5295, Bordeaux INP,I2M, F-33400 Talence, France
[2] CNRS, UMR 5295, Arts & Metiers Inst Technol, Bordeaux INP,I2M, F-33400 Talence, France
[3] Univ Bordeaux, CNRS, UMR 5026, ICMCB,Bordeaux INP, F-33600 Pessac, France
[4] Univ Bordeaux, CNRS, UMR 5258, Syensqo,LOF, F-33600 Pessac, France
关键词
Microfluidics; Polymer electrolyte membrane; Water electrolysis; Operando imaging; Infrared spectroscopy; Distribution of relaxation times; HYDROGEN-PRODUCTION; NAFION; TRANSPORT; HYDRATION;
D O I
10.1016/j.jpowsour.2024.235297
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The key component of a polymer electrolyte membrane (PEM) water splitting electrolyzer is its membrane. Despite decades of research, the transport phenomena occurring within the membrane during electrolysis - which are vital to the device's efficiency - have yet to be fully understood. In this work, controlling the anolyte concentration can effectively be used to tune the PEM water gradient, but it comes with a tradeoff in electrochemical performance. Infrared (IR) imaging is coupled with electrochemical impedance spectroscopy and distribution of relaxation times to elucidate the relationship between membrane hydration and ohmic, kinetic, and mass transport losses. Varied H2SO4 anolyte concentrations manifested water diffusion gradients through the PEM of the electrolyzer, where the strongest water diffusion gradients | Delta lambda(fit) | (relative to open circuit voltage) were observed for the most concentrated anolyte. However, tuning the anolyte concentration came with a tradeoff between a lower ohmic resistance (from 4.4 Omega cm(-2) to 4.0 Omega cm(-2) for 0.1 mol L-1 to 1.0 mol L-1 H2SO4 anolyte) and higher kinetic and mass transport losses accompanied by increasingly unstable performance. These findings showcase the potential of IR imaging when coupled with a microfluidic PEM electrolyzer and electrochemical characterization techniques, and the influence of anolyte concentration for manipulating the PEM water gradient.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Development of a Self-Pressurized Polymer Electrolyte Membrane Electrolyzer for Hydrogen Production at High Pressures
    Liao, Longfei
    Li, Mingyu
    Yin, Yongli
    Du, Ruixing
    Tan, Xing
    Zhong, Qitong
    Zeng, Feng
    CHEMICAL ENGINEERING & TECHNOLOGY, 2025, 48 (01)
  • [32] Nonlinear Water Transport Through a Polymer Electrolyte Membrane Under Transient Operation of a Proton Exchange Membrane Fuel Cell
    Lee, Chanhee
    Choi, Yoora
    Kim, Younghyeon
    Yu, Sangseok
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2024, 25 (05) : 1183 - 1200
  • [33] Effects of water transport on deuterium isotope separation during polymer electrolyte membrane water electrolysis
    Harada, Kenji
    Tanii, Risako
    Matsushima, Hisayoshi
    Ueda, Mikito
    Sato, Koki
    Haneda, Takahide
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (56) : 31389 - 31395
  • [34] Solvent Induced Fabrication of Solid Polymer Electrolyte Water Electrolyzer: A study in Sulfonated Poly(Ether Ether Ketone) Based Membrane Electrode Assembly
    Xiang, Z.
    Bu, F.
    Xing, W.
    Na, H.
    Zhang, Y.
    FUEL CELLS, 2015, 15 (01) : 246 - 250
  • [35] Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane
    Siracusano, S.
    Baglio, V.
    Lufrano, F.
    Staiti, P.
    Arico, A. S.
    JOURNAL OF MEMBRANE SCIENCE, 2013, 448 : 209 - 214
  • [36] Analysis of State of Water in Polymer Electrolyte Membrane by Raman Spectroscopy and DFT
    Tabuchi, Y.
    Ito, R.
    Tsushima, S.
    Hirai, S.
    Horai, A.
    Aotani, K.
    Kubo, N.
    Shinohara, K.
    POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01): : 1045 - +
  • [37] Water Transport Across a Polymer Electrolyte Membrane under Thermal Gradients
    Fu, Richard S.
    Preston, Joshua S.
    Pasaogullari, Ugur
    Shiomi, Takeshi
    Miyazaki, Shinichi
    Tabuchi, Yuichiro
    Hussey, Daniel S.
    Jacobson, David L.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : B303 - B312
  • [38] Contact Problems of IrOX Anodes in Polymer Electrolyte Membrane Water Electrolysis
    Doo, Gisu
    Park, Juseong
    Park, Jeesoo
    Heo, Jiyun
    Jung, Jinkwan
    Lee, Dong Wook
    Bae, Hanmin
    Hyun, Jonghyun
    Oh, Euntaek
    Kwen, Jiyun
    Kim, Kyung Min
    Kim, Hee-Tak
    ACS ENERGY LETTERS, 2023, 8 (05) : 2214 - 2220
  • [39] Experimental study on water transport in membrane humidifiers for polymer electrolyte membrane fuel cells
    Wolfenstetter, Florian
    Kreitmeir, Michael
    Schoenfeld, Ladislaus
    Klein, Harald
    Becker, Marc
    Rehfeldt, Sebastian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (55) : 23381 - 23392
  • [40] Numerical analysis of the electrochemical dissolution of iridium catalyst and evaluation of its effect on the performance of polymer electrolyte membrane water electrolyzers
    Kalinnikov, A. A.
    Grigoriev, S. A.
    Bessarabov, D. G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (59) : 22342 - 22365