Water gradient manipulation through the polymer electrolyte membrane of an operating microfluidic water electrolyzer

被引:1
|
作者
Krause, Kevin [1 ,2 ]
Crete-Laurence, Adele [1 ,2 ]
Michau, Dominique [3 ]
Clisson, Gerald [4 ]
Battaglia, Jean-Luc [1 ,2 ]
Chevalier, Stephane [1 ,2 ]
机构
[1] Univ Bordeaux, CNRS, UMR 5295, Bordeaux INP,I2M, F-33400 Talence, France
[2] CNRS, UMR 5295, Arts & Metiers Inst Technol, Bordeaux INP,I2M, F-33400 Talence, France
[3] Univ Bordeaux, CNRS, UMR 5026, ICMCB,Bordeaux INP, F-33600 Pessac, France
[4] Univ Bordeaux, CNRS, UMR 5258, Syensqo,LOF, F-33600 Pessac, France
关键词
Microfluidics; Polymer electrolyte membrane; Water electrolysis; Operando imaging; Infrared spectroscopy; Distribution of relaxation times; HYDROGEN-PRODUCTION; NAFION; TRANSPORT; HYDRATION;
D O I
10.1016/j.jpowsour.2024.235297
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The key component of a polymer electrolyte membrane (PEM) water splitting electrolyzer is its membrane. Despite decades of research, the transport phenomena occurring within the membrane during electrolysis - which are vital to the device's efficiency - have yet to be fully understood. In this work, controlling the anolyte concentration can effectively be used to tune the PEM water gradient, but it comes with a tradeoff in electrochemical performance. Infrared (IR) imaging is coupled with electrochemical impedance spectroscopy and distribution of relaxation times to elucidate the relationship between membrane hydration and ohmic, kinetic, and mass transport losses. Varied H2SO4 anolyte concentrations manifested water diffusion gradients through the PEM of the electrolyzer, where the strongest water diffusion gradients | Delta lambda(fit) | (relative to open circuit voltage) were observed for the most concentrated anolyte. However, tuning the anolyte concentration came with a tradeoff between a lower ohmic resistance (from 4.4 Omega cm(-2) to 4.0 Omega cm(-2) for 0.1 mol L-1 to 1.0 mol L-1 H2SO4 anolyte) and higher kinetic and mass transport losses accompanied by increasingly unstable performance. These findings showcase the potential of IR imaging when coupled with a microfluidic PEM electrolyzer and electrochemical characterization techniques, and the influence of anolyte concentration for manipulating the PEM water gradient.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Impacts of catalyst nanolayers on water permeation and swelling of polymer electrolyte membranes
    Yang, Gaoqiang
    Yu, Shule
    Mo, Jingke
    Li, Yifan
    Kang, Zhenye
    Bender, Guido
    Pivovar, Bryan S.
    Green, Johney B., Jr.
    Cullen, David A.
    Zhang, Feng-Yuan
    JOURNAL OF POWER SOURCES, 2020, 448
  • [22] Understanding Degradation Effects of Elevated Temperature Operating Conditions in Polymer Electrolyte Water Electrolyzers
    Garbe, Steffen
    Futter, Jonas
    Agarwal, Ayush
    Tarik, Mohamed
    Mularczyk, Adrian A.
    Schmidt, Thomas J.
    Gubler, Lorenz
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (04)
  • [23] Mathematical modeling of an anion-exchange membrane water electrolyzer for hydrogen production
    An, L.
    Zhao, T. S.
    Chai, Z. H.
    Tan, P.
    Zeng, L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (35) : 19869 - 19876
  • [24] In-situ measurement of hydrogen crossover in polymer electrolyte membrane water electrolysis
    Bensmann, B.
    Hanke-Rauschenbach, R.
    Sundmacher, K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (01) : 49 - 53
  • [25] Elucidating through-Plane Liquid Water Profile in a Polymer Electrolyte Membrane Fuel Cell
    Wang, Yun
    Chen, Ken S.
    POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01): : 1605 - +
  • [26] Nickel/cobalt oxide as a highly efficient OER electrocatalyst in an alkaline polymer electrolyte water electrolyzer
    Chi, Jun
    Yu, Hongmei
    Li, Guangfu
    Fu, Li
    Jia, Jia
    Gao, Xueqiang
    Yi, Baolian
    Shao, Zhigang
    RSC ADVANCES, 2016, 6 (93): : 90397 - 90400
  • [27] An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis
    Rakousky, Christoph
    Reimer, Uwe
    Wippermann, Klaus
    Carmo, Marcelo
    Lueke, Wiebke
    Stolten, Detlef
    JOURNAL OF POWER SOURCES, 2016, 326 : 120 - 128
  • [28] Electrochemical characterization of Polymer Electrolyte Membrane Water Electrolysis Cells
    Rozain, C.
    Millet, P.
    ELECTROCHIMICA ACTA, 2014, 131 : 160 - 167
  • [29] Capillaries for water management in polymer electrolyte membrane fuel cells
    Cho, J. I. S.
    Neville, T. P.
    Trogadas, P.
    Bailey, J.
    Shearing, P.
    Brett, D. J. L.
    Coppens, M. -O.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (48) : 21949 - 21958
  • [30] Proton conductivity improvement of polymer electrolyte membrane using nano-scale explosion of water in the membrane
    Kim, Sun Ha
    Mehmood, Asad
    Ahn, Yeonho
    Kim, Hyo-Sik
    Ha, Heung Yong
    Kim, Dukjoon
    Han, Oc Hee
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 782 : 32 - 35