On the persistence properties for the fractionary BBM equation with low dispersion in weighted Sobolev spaces

被引:0
作者
Fonseca, German [1 ]
Riano, Oscar [1 ]
Rodriguez-Blanco, Guillermo [1 ]
机构
[1] Univ Nacl Colombia, Dept Matemat, Carrera 45,26-85 Edificio Uriel Gutierrez, Bogota, DC, Colombia
关键词
BBM equation; Well-posedness; Weighted Sobolev spaces; BENJAMIN-ONO-EQUATION; WELL-POSEDNESS; BLOW-UP; STABILITY; BURGERS; WAVES; PERTURBATIONS;
D O I
10.1016/j.na.2024.113653
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial value problem associated to the low dispersion fractionary Benjamin- Bona-Mahony equation, fBBM. Our aim is to establish local persistence results in weighted Sobolev spaces and to obtain unique continuation results that imply that those results above are sharp. Hence, arbitrary polynomial type decay is not preserved by the fBBM flow.
引用
收藏
页数:18
相关论文
共 37 条
[1]   The regularized Benjamin-Ono and BBM equations: Well-posedness and nonlinear stability [J].
Angulo, Jaime ;
Scialom, Marcia ;
Banquet, Carlos .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (11) :4011-4036
[2]  
ARONSZAJN N, 1961, ANN I FOURIER GRENOB, V11, P385
[3]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[4]  
Bourgain J, 2014, DIFFER INTEGRAL EQU, V27, P1037
[6]  
Cunha A, 2024, Arxiv, DOI [arXiv:2212.11160, 10.3934/cpaa.2024085, DOI 10.3934/CPAA.2024085]
[7]   On the decay properties of solutions to a class of Schrodinger equations [J].
Dawson, L. ;
McGahagan, H. ;
Ponce, G. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) :2081-2090
[8]   WELL-POSEDNESS AND ILL-POSEDNESS RESULTS FOR THE REGULARIZED BENJAMIN-ONO EQUATION IN WEIGHTED SOBOLEV SPACES [J].
Fonseca, G. ;
Rodriguez-Blanco, G. ;
Sandoval, W. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (04) :1327-1341
[9]   The IVP for the dispersion generalized Benjamin-Ono equation in weighted Sobolev spaces [J].
Fonseca, German ;
Linares, Felipe ;
Ponce, Gustavo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (05) :763-790
[10]   The IVP for the Benjamin-Ono equation in weighted Sobolev spaces [J].
Fonseca, German ;
Ponce, Gustavo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (02) :436-459