Admissible Optimal Control for Parameter Estimation in Quantum Systems

被引:0
作者
Clouatre, Maison [1 ]
Marano, Stefano [2 ]
Falb, Peter L. [3 ]
Win, Moe Z. [3 ]
机构
[1] MIT, Wireless Informat & Network Sci Lab, Cambridge, MA 02139 USA
[2] Univ Salerno, Dept Informat & Elect Engn & Appl Math DIEM, I-84084 Fisciano, SA, Italy
[3] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
基金
美国国家科学基金会;
关键词
Quantum system; Quantum state; Time measurement; Random variables; Parameter estimation; Optimal control; Mathematical models; Quantum parameter estimation; Fisher information; quantum control; statistical inference; control-enhanced parameter estimation;
D O I
10.1109/LCSYS.2024.3411624
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter investigates parameter estimation in quantum systems that undergo dynamical evolution. Optimal control problems are formulated to maximize the information, about an unknown parameter, extracted by a given quantum measurement apparatus. This letter introduces the concept of "admissible controls"-control laws that do not depend on the unknown parameter they elicit. For scalar parameter estimation in unital quantum systems interrogated by binary measurements, this letter derives a necessary and sufficient condition on quantum measurement operators so that an information maximizing control law is admissible. When the admissibility condition is satisfied, it is shown that the resulting optimal control problem may be solved using well-established techniques.
引用
收藏
页码:2283 / 2288
页数:6
相关论文
共 50 条
[31]   The robustness optimization of parameter estimation in chaotic control systems [J].
Xu, Zhen .
Journal of Engineering Science and Technology Review, 2015, 8 (02) :61-67
[32]   Parameter estimation for control systems based on impulse responses [J].
Xu, Ling ;
Ding, Feng .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (06) :2471-2479
[33]   Parameter estimation for control systems based on impulse responses [J].
Ling Xu ;
Feng Ding .
International Journal of Control, Automation and Systems, 2017, 15 :2471-2479
[34]   Optimal control of quantum systems with SU(1, 1) dynamical symmetry [J].
Dong W. ;
Wu R. ;
Wu J. ;
Li C. ;
Tarn T.-J. .
Control Theory and Technology, 2015, 13 (3) :211-220
[35]   An optimal control approach to a fluid-structure interaction parameter estimation problem with inequality constraints [J].
Chirco, Leonardo ;
Manservisi, Sandro .
COMPUTERS & FLUIDS, 2021, 226
[36]   Optimal initial state for fast parameter estimation in nonlinear dynamical systems [J].
Li, Qiaochu ;
Jauberthie, Carine ;
Denis-Vidal, Lilianne ;
Cherfi, Zohra .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 171 :109-117
[37]   Complexity analysis and optimal experimental design for parameter estimation of biological systems [J].
Wu, Fang-Xiang ;
Mu, Lei ;
Luo, Ruizhi .
2008 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-4, 2008, :379-383
[38]   Optimal parameter estimation of dynamical systems using direct transcription methods [J].
Williams, P ;
Trivailo, P .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2005, 13 (04) :377-409
[39]   Time-local optimal control for parameter estimation in the Gaussian regime [J].
Predko, Alexander ;
Albarelli, Francesco ;
Serafini, Alessio .
PHYSICS LETTERS A, 2020, 384 (13)
[40]   Optimal control of an SIRD model with data-driven parameter estimation [J].
Khan, Md. Harun-Or-Rashid ;
Ahmed, Mostak ;
Sarker, M. M. Alam .
RESULTS IN CONTROL AND OPTIMIZATION, 2024, 14