Admissible Optimal Control for Parameter Estimation in Quantum Systems

被引:0
|
作者
Clouatre, Maison [1 ]
Marano, Stefano [2 ]
Falb, Peter L. [3 ]
Win, Moe Z. [3 ]
机构
[1] MIT, Wireless Informat & Network Sci Lab, Cambridge, MA 02139 USA
[2] Univ Salerno, Dept Informat & Elect Engn & Appl Math DIEM, I-84084 Fisciano, SA, Italy
[3] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
来源
基金
美国国家科学基金会;
关键词
Quantum system; Quantum state; Time measurement; Random variables; Parameter estimation; Optimal control; Mathematical models; Quantum parameter estimation; Fisher information; quantum control; statistical inference; control-enhanced parameter estimation;
D O I
10.1109/LCSYS.2024.3411624
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter investigates parameter estimation in quantum systems that undergo dynamical evolution. Optimal control problems are formulated to maximize the information, about an unknown parameter, extracted by a given quantum measurement apparatus. This letter introduces the concept of "admissible controls"-control laws that do not depend on the unknown parameter they elicit. For scalar parameter estimation in unital quantum systems interrogated by binary measurements, this letter derives a necessary and sufficient condition on quantum measurement operators so that an information maximizing control law is admissible. When the admissibility condition is satisfied, it is shown that the resulting optimal control problem may be solved using well-established techniques.
引用
收藏
页码:2283 / 2288
页数:6
相关论文
共 50 条
  • [11] Quantum parameter estimation of non-Hermitian systems with optimal measurements
    Yu, Xinglei
    Zhang, Chengjie
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [12] Adaptive Quantum Parameter Estimation Through Feedback-Based Optimal Control
    Tian, Yue
    Lu, Xiujuan
    Kuang, Sen
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 660 - 665
  • [13] Optimal Control and Stochastic Parameter Estimation
    Ngnepieba, Pierre
    Hussaini, M. Y.
    Debreu, Laurent
    MONTE CARLO METHODS AND APPLICATIONS, 2006, 12 (5-6): : 461 - 476
  • [14] Quantum parameter estimation with feedback control
    Liu, Liqiang
    Yuan, Haidong
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 5249 - 5252
  • [15] Optimal quantum parameter estimation in a pulsed quantum optomechanical system
    Zheng, Qiang
    Yao, Yao
    Li, Yong
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [16] Enhancing parameter precision of optimal quantum estimation by quantum screening
    Huang, Jiang
    Guo, You-Neng
    Xie, Qin
    CHINESE PHYSICS B, 2016, 25 (02)
  • [17] Enhancing parameter precision of optimal quantum estimation by quantum screening
    黄江
    郭有能
    谢钦
    Chinese Physics B, 2016, 25 (02) : 70 - 73
  • [18] Optimal control and admissible relaxation of uncertain nonlinear elliptic systems
    Papageorgiou, NS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 197 (01) : 27 - 41
  • [19] Optimized Quantum Parameter Estimation in Open Quantum Systems
    Yang, Shuai
    Cui, Wei
    2020 INTERNATIONAL SYMPOSIUM ON AUTONOMOUS SYSTEMS (ISAS), 2020, : 121 - 123
  • [20] OPTIMAL ADAPTIVE ESTIMATION AND STOCHASTIC-CONTROL FOR DISTRIBUTED-PARAMETER SYSTEMS
    WATANABE, K
    YOSHIMURA, T
    SOEDA, T
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (01) : 216 - 219