Admissible Optimal Control for Parameter Estimation in Quantum Systems

被引:0
作者
Clouatre, Maison [1 ]
Marano, Stefano [2 ]
Falb, Peter L. [3 ]
Win, Moe Z. [3 ]
机构
[1] MIT, Wireless Informat & Network Sci Lab, Cambridge, MA 02139 USA
[2] Univ Salerno, Dept Informat & Elect Engn & Appl Math DIEM, I-84084 Fisciano, SA, Italy
[3] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
基金
美国国家科学基金会;
关键词
Quantum system; Quantum state; Time measurement; Random variables; Parameter estimation; Optimal control; Mathematical models; Quantum parameter estimation; Fisher information; quantum control; statistical inference; control-enhanced parameter estimation;
D O I
10.1109/LCSYS.2024.3411624
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter investigates parameter estimation in quantum systems that undergo dynamical evolution. Optimal control problems are formulated to maximize the information, about an unknown parameter, extracted by a given quantum measurement apparatus. This letter introduces the concept of "admissible controls"-control laws that do not depend on the unknown parameter they elicit. For scalar parameter estimation in unital quantum systems interrogated by binary measurements, this letter derives a necessary and sufficient condition on quantum measurement operators so that an information maximizing control law is admissible. When the admissibility condition is satisfied, it is shown that the resulting optimal control problem may be solved using well-established techniques.
引用
收藏
页码:2283 / 2288
页数:6
相关论文
共 50 条
[11]   On one class of optimal control problems for quantum systems [J].
E. A. Trushkova .
Automation and Remote Control, 2013, 74 :26-35
[12]   Optimal Parameter Estimation Techniques for Complex Nonlinear Systems [J].
Kumar, Kaushal ;
Kostina, Ekaterina .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024,
[13]   Optimal weighting design for distributed parameter systems estimation [J].
Ouarit, M ;
Yvon, JP ;
Henry, J .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2001, 22 (01) :37-49
[14]   Uncertainties in parameter estimation and optimal control in batch distillation [J].
Ulas, S ;
Diwekar, UM ;
Stadtherr, MA .
COMPUTERS & CHEMICAL ENGINEERING, 2005, 29 (08) :1805-1814
[15]   OPTIMAL CONTROL AND PARAMETER ESTIMATION FOR STATIONARY FLUID-STRUCTURE INTERACTION PROBLEMS [J].
Richter, T. ;
Wick, T. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05) :B1085-B1104
[16]   PARAMETER ESTIMATION OF OPTIMAL CONTROL PROBLEMS BASED ON GAME THEORY AND TRACKING METHOD [J].
Bian, Qiaorou ;
Li, Xianglei ;
Wang, Qiao ;
Wang, Jun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2025,
[17]   Open quantum systems with linear dynamics: Optimal unravellings for optimal feedback control [J].
Wiseman, HM ;
Doherty, AC .
FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS II, 2004, 5468 :292-305
[18]   OPTIMAL MEASUREMENT LOCATIONS FOR PARAMETER ESTIMATION OF NON LINEAR DISTRIBUTED PARAMETER SYSTEMS [J].
Alana, J. E. .
BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2010, 27 (04) :627-642
[19]   THE SMOOTH CONTINUATION METHOD IN OPTIMAL CONTROL WITH AN APPLICATION TO QUANTUM SYSTEMS [J].
Bonnard, Bernard ;
Shcherbakova, Nataliya ;
Sugny, Dominique .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (01) :267-292
[20]   Optimal control of quantum systems under different manipulation conditions [J].
Wei, Jiahua ;
Zhou, Weiwei ;
Dai, Hong-Yi ;
Zou, Fengxing ;
Zhang, Ming .
PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, :2091-2096