Admissible Optimal Control for Parameter Estimation in Quantum Systems

被引:1
作者
Clouatre, Maison [1 ]
Marano, Stefano [2 ]
Falb, Peter L. [3 ]
Win, Moe Z. [3 ]
机构
[1] MIT, Wireless Informat & Network Sci Lab, Cambridge, MA 02139 USA
[2] Univ Salerno, Dept Informat & Elect Engn & Appl Math DIEM, I-84084 Fisciano, SA, Italy
[3] MIT, Lab Informat & Decis Syst, Cambridge, MA 02139 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2024年 / 8卷
基金
美国国家科学基金会;
关键词
Quantum system; Quantum state; Time measurement; Random variables; Parameter estimation; Optimal control; Mathematical models; Quantum parameter estimation; Fisher information; quantum control; statistical inference; control-enhanced parameter estimation;
D O I
10.1109/LCSYS.2024.3411624
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter investigates parameter estimation in quantum systems that undergo dynamical evolution. Optimal control problems are formulated to maximize the information, about an unknown parameter, extracted by a given quantum measurement apparatus. This letter introduces the concept of "admissible controls"-control laws that do not depend on the unknown parameter they elicit. For scalar parameter estimation in unital quantum systems interrogated by binary measurements, this letter derives a necessary and sufficient condition on quantum measurement operators so that an information maximizing control law is admissible. When the admissibility condition is satisfied, it is shown that the resulting optimal control problem may be solved using well-established techniques.
引用
收藏
页码:2283 / 2288
页数:6
相关论文
共 27 条
[1]  
Athans M., 2013, Optimal Control: An Introduction To the Theory and Its Applications
[2]   Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control [J].
Boscain, U. ;
Sigalotti, M. ;
Sugny, D. .
PRX QUANTUM, 2021, 2 (03)
[3]  
Breuer H., 2002, The Theory of Open Quantum Systems, DOI 10.1093/acprof:oso/9780199213900.001.0001
[4]  
Cariolaro G., 2015, Quantum Communications, DOI 10.1007/978-3-319-15600-2
[5]  
Casella G., 2002, Statistical inference, VII edn
[6]   Model-Predictive Quantum Control via Hamiltonian Learning [J].
Clouatre, Maison ;
Khojasteh, Mohammad Javad ;
Win, Moe Z. .
IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2022, 3
[7]   Quantum sensing [J].
Degen, C. L. ;
Reinhard, F. ;
Cappellaro, P. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (03)
[8]   Quantum interferometry with binary-outcome measurements in the presence of phase diffusion [J].
Feng, X. M. ;
Jin, G. R. ;
Yang, W. .
PHYSICAL REVIEW A, 2014, 90 (01)
[9]   Quantum-enhanced positioning and clock synchronization [J].
Giovannetti, V ;
Lloyd, S ;
Maccone, L .
NATURE, 2001, 412 (6845) :417-419
[10]   Quantum Discrimination of Noisy Photon-Added Coherent States [J].
Guerrini, Stefano ;
Win, Moe Z. ;
Chiani, Marco ;
Conti, Andrea .
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, 2020, 1 (02) :469-479