Few-shot learning with representative global prototype

被引:1
|
作者
Liu, Yukun [1 ]
Shi, Daming [1 ]
Lin, Hexiu [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Few-shot learning; Representative global prototype; Conditional variational autoencoder; Sample synthesis;
D O I
10.1016/j.neunet.2024.106600
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot learning is often challenged by low generalization performance due to the model is mostly learned with the base classes only. To mitigate the above issues, a few-shot learning method with representative global prototype is proposed in this paper. Specifically, to enhance generalization to novel class, we propose a strategy for jointly training base and novel classes. This process produces prototypes characterizing the class information called representative global prototypes. Additionally, to avoid the problem of data imbalance and prototype bias caused by newly added categories of sparse samples, a novel sample synthesis method is proposed for augmenting more representative samples of novel class. Finally, representative samples and non-representative samples with high uncertainty are selected to enhance the representational and discriminative abilities of the global prototype. Intensive experiments have been conducted on two popular benchmark datasets, and the experimental results show that this method significantly improves the classification ability of few-shot learning tasks and achieves state-of-the-art performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Complementary features based prototype self-updating for few-shot learning
    Xu, Xinlei
    Wang, Zhe
    Chi, Ziqiu
    Yang, Hai
    Du, Wenli
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 214
  • [32] Few-shot learning based on prototype rectification with a self-attention mechanism
    Zhao, Peng
    Wang, Liang
    Zhao, Xuyang
    Liu, Huiting
    Ji, Xia
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [33] Prototype-Augmented Contrastive Learning for Few-Shot Unsupervised Domain Adaptation
    Gong, Lu
    Zhang, Wen
    Li, Mingkang
    Zhang, Jiali
    Zhang, Zili
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT IV, KSEM 2023, 2023, 14120 : 197 - 210
  • [34] Gaussian Prototype Rectification For Few-shot Image Recognition
    Lin, Jinfu
    Shen, Junmin
    He, Xiaojian
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [35] Global-Local Interplay in Semantic Alignment for Few-Shot Learning
    Hao, Fusheng
    He, Fengxiang
    Cheng, Jun
    Tao, Dacheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4351 - 4363
  • [36] Explore pretraining for few-shot learning
    Yan Li
    Jinjie Huang
    Multimedia Tools and Applications, 2024, 83 : 4691 - 4702
  • [37] Few-Shot Learning With a Strong Teacher
    Ye, Han-Jia
    Ming, Lu
    Zhan, De-Chuan
    Chao, Wei-Lun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1425 - 1440
  • [38] Few-Shot Learning for Defence and Security
    Robinson, Todd
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS II, 2020, 11413
  • [39] Federated Few-Shot Learning with Adversarial Learning
    Fan, Chenyou
    Huang, Jianwei
    2021 19TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), 2021,
  • [40] Active Few-Shot Learning with FASL
    Muller, Thomas
    Perez-Torro, Guillermo
    Basile, Angelo
    Franco-Salvador, Marc
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS (NLDB 2022), 2022, 13286 : 98 - 110