Few-shot learning with representative global prototype

被引:1
|
作者
Liu, Yukun [1 ]
Shi, Daming [1 ]
Lin, Hexiu [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Few-shot learning; Representative global prototype; Conditional variational autoencoder; Sample synthesis;
D O I
10.1016/j.neunet.2024.106600
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot learning is often challenged by low generalization performance due to the model is mostly learned with the base classes only. To mitigate the above issues, a few-shot learning method with representative global prototype is proposed in this paper. Specifically, to enhance generalization to novel class, we propose a strategy for jointly training base and novel classes. This process produces prototypes characterizing the class information called representative global prototypes. Additionally, to avoid the problem of data imbalance and prototype bias caused by newly added categories of sparse samples, a novel sample synthesis method is proposed for augmenting more representative samples of novel class. Finally, representative samples and non-representative samples with high uncertainty are selected to enhance the representational and discriminative abilities of the global prototype. Intensive experiments have been conducted on two popular benchmark datasets, and the experimental results show that this method significantly improves the classification ability of few-shot learning tasks and achieves state-of-the-art performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Prototype Completion for Few-Shot Learning
    Zhang, Baoquan
    Li, Xutao
    Ye, Yunming
    Feng, Shanshan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12250 - 12268
  • [2] Prototype Reinforcement for Few-Shot Learning
    Xu, Liheng
    Xie, Qian
    Jiang, Baoqing
    Zhang, Jiashuo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4912 - 4916
  • [3] REPRESENTATIVE LOCAL FEATURE MINING FOR FEW-SHOT LEARNING
    Yan, Kun
    Liu, Lingbo
    Hou, Jun
    Wang, Ping
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1730 - 1734
  • [4] Distributed few-shot learning with prototype distribution correction
    Fu, Zhiling
    Tang, Dongfang
    Ma, Pingchuan
    Wang, Zhe
    Gao, Wen
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30552 - 30565
  • [5] WPE: Weighted prototype estimation for few-shot learning
    Cao, Jiangzhong
    Yao, Zijie
    Yu, Lianggeng
    Ling, Bingo Wing-Kuen
    IMAGE AND VISION COMPUTING, 2023, 137
  • [6] Prototype Relationship Optimization Network for Few-Shot Learning
    Wang, Dengzhong
    Zhong, Yuan
    Ma, Yunfei
    Guo, Chunsheng
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025, 20 (03) : 405 - 414
  • [7] Distributed few-shot learning with prototype distribution correction
    Zhiling Fu
    Dongfang Tang
    Pingchuan Ma
    Zhe Wang
    Wen Gao
    Applied Intelligence, 2023, 53 : 30552 - 30565
  • [8] Decomposed Prototype Learning for Few-Shot Scene Graph Generation
    Li, Xingchen
    Xiao, Jun
    Chen, Guikun
    Feng, Yinfu
    Yang, Yi
    Liu, An-an
    Chen, Long
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2025, 21 (01)
  • [9] Adaptive federated few-shot feature learning with prototype rectification
    Yang, Mengping
    Chu, Xu
    Zhu, Jingwen
    Xi, Yonghui
    Niu, Saisai
    Wang, Zhe
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [10] Mutual Learning Prototype Network for Few-Shot Text Classification
    Liu, Jun
    Qin, Xiaorui
    Tao, Jian
    Dong, Hongfei
    Li, Xiaoxu
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (03): : 30 - 35