DCsiNet: Effective Handling of Noisy CSI in FDD Massive MIMO System

被引:1
作者
Alam, Syed Samiul [1 ]
Chakma, Arbil [1 ]
Imran, Al [1 ]
Jang, Yeong Min [1 ]
机构
[1] Kookmin Univ, Elect Engn Dept, Seoul 02707, South Korea
基金
新加坡国家研究基金会;
关键词
Noise reduction; Noise; Noise measurement; Feature extraction; Decoding; Signal to noise ratio; Massive MIMO; CSI feedback; deep learning; massive MIMO; autoencoder; denoising; FEEDBACK;
D O I
10.1109/LWC.2024.3427316
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To enhance the performance of frequency division duplex (FDD) massive multiple-input multiple-output (MIMO) systems, it is crucial to relay downlink channel state information (CSI) from user equipment (UE) to the base station (BS). However, minimizing feedback overhead poses a significant challenge. In recent years, various deep learning (DL) models have been introduced to efficiently compress CSI into codewords at the UE and subsequently reconstruct the information at the BS, aiming to reduce feedback overhead. Notably, previous studies overlooked real-world scenarios, such as codeword corruption by noise. In this letter, we propose a novel deep learning model, denoising CSI network (DCsiNet), designed to address noise-corrupted codewords, wherein the decoder serves the dual purpose of decompressing and denoising the CSI. Our proposed network incorporates a multi-scale feature extractor and an attention-based refiner, contributing to improved denoising and reconstruction outcomes. Numerical results are presented to showcase the superior performance of our proposed network compared to other deep learning-based models, particularly in reconstructing CSI from noisy codewords.
引用
收藏
页码:2556 / 2560
页数:5
相关论文
共 22 条
[1]   Deep Decoder CsiNet for FDD Massive MIMO System [J].
Chakma, Arbil ;
Alam, Syed Samiul ;
Rahman, Md Habibur ;
Jang, Yeong Min .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (12) :2073-2077
[2]   TransNet: Full Attention Network for CSI Feedback in FDD Massive MIMO System [J].
Cui, Yaodong ;
Guo, Aihuang ;
Song, Chunlin .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (05) :903-907
[3]   Multiscale Residual Convolution Neural Network and Sector Descriptor-Based Road Detection Method [J].
Dai, Jiguang ;
Du, Yang ;
Zhu, Tingting ;
Wang, Yang ;
Gao, Lin .
IEEE ACCESS, 2019, 7 :173377-173392
[4]  
Daubechies I., 2003, arXiv:math/0307152, V106, P18914
[5]  
Guo JJ, 2020, IEEE T WIREL COMMUN, V19, P2827, DOI [10.1109/TWC.2020.2968430, 10.1109/TNSE.2020.2997359]
[6]   Toward Convolutional Blind Denoising of Real Photographs [J].
Guo, Shi ;
Yan, Zifei ;
Zhang, Kai ;
Zuo, Wangmeng ;
Zhang, Lei .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1712-1722
[7]   Deep Autoencoder Based CSI Feedback With Feedback Errors and Feedback Delay in FDD Massive MIMO Systems [J].
Jang, Youngrok ;
Kong, Gyuyeol ;
Jung, Minchae ;
Choi, Sooyong ;
Kim, Il-Min .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (03) :833-836
[8]   Practical Denoising Autoencoder for CSI Feedback Without Clean Target in Massive MIMO Networks [J].
Lee, Anseok ;
Park, Hanjun ;
Kwon, Yongjin ;
Lee, Heesoo ;
Chong, Song .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (02) :525-529
[9]   Deep Learning and Compressive Sensing-Based CSI Feedback in FDD Massive MIMO Systems [J].
Liang, Peizhe ;
Fan, Jiancun ;
Shen, Wenhan ;
Qin, Zhijin ;
Li, Geoffrey Ye .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) :9217-9222
[10]   THE COST 2100 MIMO CHANNEL MODEL [J].
Liu, Lingfeng ;
Oestges, Claude ;
Poutanen, Juho ;
Haneda, Katsuyuki ;
Vainikainen, Pertti ;
Quitin, Francois ;
Tufvesson, Fredrik ;
De Doncker, Philippe .
IEEE WIRELESS COMMUNICATIONS, 2012, 19 (06) :92-99