The energy-limited water loss of an alpine shrubland on the northeastern Qinghai-Tibetan Plateau, China

被引:0
|
作者
Zhang, Fawei [1 ]
Li, Hongqin [2 ]
Zhu, Jingbin [3 ]
Li, Jiexia [1 ]
Zhou, Huakun [1 ]
Li, Yingnian [1 ]
机构
[1] Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Adaptat & Evolut Plateau Biota, Xining 810001, Qinghai, Peoples R China
[2] Luoyang Normal Univ, Coll Life Sci, Luoyang 471934, Henan, Peoples R China
[3] Zaozhuang Univ, Coll Tourism Resources & Environm, Zaozhuang 277100, Shandong, Peoples R China
关键词
Evapotranspiration; water budget; soil water storage change; alpine shrublands; eddy covariance techniques; Qinghai-Tibetan Plateau; EVAPOTRANSPIRATION; VARIABILITY; FLUXES; VAPOR; LAKE;
D O I
10.1016/j.ejrh.2024.101905
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Study region: Alpine shrubland on the northeastern Qinghai-Tibetan Plateau. Study focus: Water provision ability is a pivotal ecological service of high-altitude alpine regions and is controlled by precipitation, evapotranspiration (ET), and soil water storage whereas the underlying ecohydrological processes remain highly unquantified. Here, we investigated continuous 19-year flux measurements to quantify the temporal patterns of ET and water budget (precipitation minus ET, P-ET), as well as 0-20 cm soil water storage change (Delta SWS). New hydrological insights for the region: At a monthly scale, ET peaked in July (96.7 f 26.4 mm, Mean f S.D.) and averaged 41.7 f 31.9 mm, whose variations were determined by the slope of the saturation vapor pressure curve at air temperature, air and soil temperatures, regardless of vegetation growth stage. P-ET averaged 18.3 f 26.3 mm in August and September while stayed deficit during the other months. The variations in P-ET were controlled by precipitation in the May-October growing season whereas by ET in the non-growing season from November to April. Delta SWS peaked in May (28.8 f 11.2 mm) and September (3.0 f 2.7 mm) and almost accumulated to zero over the whole season. At annual scales, none of ET, P-ET, and Delta SWS changed significantly. ET averaged 512.2 f 68.4 mm and exceeded precipitation (459.1 f 58.4 mm), likely due to the lateral flow supply of uphill locations. The variations in ET were regulated directly by bulk canopy resistance and indirectly by net radiation. P-ET averaged -53.2 f 95.4 mm and demonstrated a clear water deficit (-51.6 f 21.0 mm) during the non-growing season. The variations of P-ET were driven jointly by precipitation and ET, with opposite but equivalent effects. The dominance of thermal conditions and energy availability on ET variability manifested an energy-limited feature of water loss in the alpine shrubland. The temporal patterns in P-ET elucidated that the alpine shrubland plays the water retention rather than water provision function through transforming variable precipitation input into stable ET loss.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai-Tibetan Plateau
    Wei, Junqi
    Li, Xiaoyan
    Liu, Lei
    Christensen, Torben Rojle
    Jiang, Zhiyun
    Ma, Yujun
    Wu, Xiuchen
    Yao, Hongyun
    Lopez-Blanco, Efren
    BIOGEOSCIENCES, 2022, 19 (03) : 861 - 875
  • [22] Carbon dioxide exchange between the atmosphere and an alpine shrubland meadow during the growing season on the Qinghai-Tibetan Plateau
    Zhao, L
    Li, YN
    Gu, S
    Zhao, XQ
    Xu, SX
    Yu, GR
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2005, 47 (03) : 271 - 282
  • [23] A prognostic phenology model for alpine meadows on the Qinghai-Tibetan Plateau
    Sun, Qingling
    Li, Baolin
    Yuan, Yecheng
    Jiang, Yuhao
    Zhang, Tao
    Gao, Xizhang
    Ge, Jinsong
    Li, Fei
    Zhang, Zhijun
    ECOLOGICAL INDICATORS, 2018, 93 : 1089 - 1100
  • [24] The variation in soil water retention of alpine shrub meadow under different degrees of degradation on northeastern Qinghai-Tibetan plateau
    Dai, Licong
    Guo, Xiaowei
    Ke, Xun
    Du, Yangong
    Mang, Fawei
    Cao, Guangmin
    PLANT AND SOIL, 2021, 458 (1-2) : 231 - 244
  • [25] Optimization yak grazing stocking rate in an alpine grassland of Qinghai-Tibetan Plateau, China
    Quan-Ming Dong
    Xin-Quan Zhao
    Gao-Lin Wu
    Xiao-Feng Chang
    Environmental Earth Sciences, 2015, 73 : 2497 - 2503
  • [26] Observations of high level of ozone at Qinghai Lake basin in the northeastern Qinghai-Tibetan Plateau, western China
    Q. Y. Wang
    R. S. Gao
    J. J. Cao
    J. P. Schwarz
    D. W. Fahey
    Z. X. Shen
    T. F. Hu
    P. Wang
    X. B. Xu
    R. -J. Huang
    Journal of Atmospheric Chemistry, 2015, 72 : 19 - 26
  • [27] Optimization yak grazing stocking rate in an alpine grassland of Qinghai-Tibetan Plateau, China
    Dong, Quan-Ming
    Zhao, Xin-Quan
    Wu, Gao-Lin
    Chang, Xiao-Feng
    ENVIRONMENTAL EARTH SCIENCES, 2015, 73 (05) : 2497 - 2503
  • [28] Observations of high level of ozone at Qinghai Lake basin in the northeastern Qinghai-Tibetan Plateau, western China
    Wang, Q. Y.
    Gao, R. S.
    Cao, J. J.
    Schwarz, J. P.
    Fahey, D. W.
    Shen, Z. X.
    Hu, T. F.
    Wang, P.
    Xu, X. B.
    Huang, R. -J.
    JOURNAL OF ATMOSPHERIC CHEMISTRY, 2015, 72 (01) : 19 - 26
  • [29] Effects of Patchiness on Soil Properties and Degradation of Alpine Meadow on the Qinghai-Tibetan Plateau
    Zhang, Wei
    Yi, Shuhua
    Qin, Yu
    Zhang, Jinglin
    LAND, 2024, 13 (10)
  • [30] Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau
    Zhao, Liang
    Li, Yingnian
    Xu, Shixiao
    Zhou, Huakun
    Gu, Song
    Yu, Guirui
    Zhao, Xinquan
    GLOBAL CHANGE BIOLOGY, 2006, 12 (10) : 1940 - 1953