Overcoming noise limitations in quantum key distribution with quantum privacy amplification

被引:0
作者
Sohr, Philipp [1 ,2 ,3 ,4 ]
Ecker, Sebastian [1 ,3 ,4 ]
Bulla, Lukas [1 ,3 ,4 ]
Bohmann, Martin [1 ,3 ,4 ]
Ursin, Rupert [1 ,3 ,4 ]
机构
[1] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat IQOQI, Boltzmanngasse 3, A-1090 Vienna, Austria
[2] Tech Univ Wien, Atominst, A-1040 Vienna, Austria
[3] Univ Vienna, Fac Phys, Vienna Ctr Quantum Sci & Technol VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
[4] Quantum Technol Labs GmbH, Clemens Holzmeister Str 6-6, A-1100 Vienna, Austria
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 02期
基金
欧盟地平线“2020”;
关键词
CRYPTOGRAPHY; ENTANGLEMENT; SECURITY;
D O I
10.1103/PhysRevApplied.22.024059
中图分类号
O59 [应用物理学];
学科分类号
摘要
High-quality, distributed quantum entanglement is the distinctive resource for quantum communication and forms the foundation for the unequaled level of security that can be assured in quantum key distribution. While the entanglement provider does not need to be trusted, the secure key rate drops to zero if the entanglement used is too noisy. In this paper, we show experimentally that QPA is able to increase the secure key rate achievable with QKD by improving the quality of distributed entanglement, thus increasing the quantum advantage in QKD. Beyond that, we show that QPA enables key generation at noise levels that previously prevented key generation. These remarkable results were only made possible by the efficient implementation exploiting hyperentanglement in the polarization and energy-time degrees of freedom. We provide a detailed characterization of the gain in secure key rate achieved in our proof-of- principle experiment at different noise levels. The results are paramount for the implementation of a global quantum network linking quantum processors and ensuring future-proof data security.
引用
收藏
页数:7
相关论文
共 49 条
  • [1] Generation of hyperentangled photon pairs
    Barreiro, JT
    Langford, NK
    Peters, NA
    Kwiat, PG
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (26)
  • [2] Beating the channel capacity limit for linear photonic superdense coding
    Barreiro, Julio T.
    Wei, Tzu-Chieh
    Kwiat, Paul G.
    [J]. NATURE PHYSICS, 2008, 4 (04) : 282 - 286
  • [3] Maximally nonlocal and monogamous quantum correlations
    Barrett, Jonathan
    Kent, Adrian
    Pironio, Stefano
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (17)
  • [4] Generalized privacy amplification
    Bennett, CH
    Brassard, G
    Crepeau, C
    Maurer, UM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) : 1915 - 1923
  • [5] Purification of noisy entanglement and faithful teleportation via noisy channels
    Bennett, CH
    Brassard, G
    Popescu, S
    Schumacher, B
    Smolin, JA
    Wootters, WK
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (05) : 722 - 725
  • [6] QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM
    BENNETT, CH
    BRASSARD, G
    MERMIN, ND
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (05) : 557 - 559
  • [7] Bergmayr A, 2024, Arxiv, DOI arXiv:2308.04422
  • [8] Distribution of genuine high-dimensional entanglement over 10.2 km of noisy metropolitan atmosphere
    Bulla, Lukas
    Hjorth, Kristian
    Kohout, Oskar
    Lang, Jan
    Ecker, Sebastian
    Neumann, Sebastian P.
    Bittermann, Julius
    Kindler, Robert
    Huber, Marcus
    Bohmann, Martin
    Ursin, Rupert
    Pivoluska, Matej
    [J]. PHYSICAL REVIEW A, 2023, 107 (05)
  • [9] Nonlocal Temporal Interferometry for Highly Resilient Free-Space Quantum Communication
    Bulla, Lukas
    Pivoluska, Matej
    Hjorth, Kristian
    Kohout, Oskar
    Lang, Jan
    Ecker, Sebastian
    Neumann, Sebastian P.
    Bittermann, Julius
    Kindler, Robert
    Huber, Marcus
    Bohmann, Martin
    Ursin, Rupert
    [J]. PHYSICAL REVIEW X, 2023, 13 (02):
  • [10] High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges
    Cozzolino, Daniele
    Da Lio, Beatrice
    Bacco, Davide
    Oxenlowe, Leif Katsuo
    [J]. ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (12)