Biopolymer Hydroxypropyl Methylcellulose-Based Filaments Prepared by Hot-Melt Extrusion Suitable for Fused Deposition Modeling 3D Printing of Personalized Capsules

被引:2
|
作者
Machackova, Jana [1 ]
Komersova, Alena [1 ]
Nevyhostena, Marie [1 ]
Svoboda, Roman [1 ]
Bartos, Martin [2 ]
Matzick, Kevin [1 ]
机构
[1] Univ Pardubice, Fac Chem Technol, Dept Phys Chem, Studentska 573, Pardubice 53210, Czech Republic
[2] Univ Pardubice, Fac Chem Technol, Dept Analyt Chem, Pardubice, Czech Republic
关键词
3D printing; fused deposition modeling; hot-melt extrusion; capsules; biopolymers; MATRIX TABLETS; RELEASE; HPMC; POLYMERS;
D O I
10.1089/3dp.2024.0030
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Materials based on the hydroxypropyl methylcellulose mixed with different biopolymers (BioP; 5 w% of chitosan, sodium alginate, apple pectin, or citrus pectin) were processed by hot-melt extrusion and 3D printing to produce capsules intended for controlled drug release. Microscopic analyses confirmed significant impact of BioP on the processing temperatures and quality of the 3D printing. The capsules' chemical composition had a more significant impact on the dissolution profiles in acidic and neutral media, which are a robust function of the intermolecular bonds and swelling characteristics of the particular BioP (as indicated by the combined results of Raman spectroscopy, differential scanning calorimetry [DSC], and thermogravimetry). The capsules of all tested compositions retained the model drug for 120 min in pH 1.2, i.e., fulfilled the condition of targeting the small intestine. The presence of the particular BioP was found to be particularly beneficial in the development of personalized capsules for oral administration. The addition of both pectins led to a relatively fast pH-independent release of the model drug and has the potential applications in the targeting of the duodenum or jejunum. The capsules containing alginate and chitosan exhibited later initial release in pH 1.2, guaranteeing an unaltered passage through the stomach environment.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Development of ibuprofen tablet with polyethylene oxide using fused deposition modeling 3D-printing coupled with hot-melt extrusion
    Chung, Sooyeon
    Srinivasan, Priyanka
    Zhang, Peilun
    Bandari, Suresh
    Repka, Michael A.
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2022, 76
  • [12] Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery
    Tan, Deck Khong
    Maniruzzaman, Mohammed
    Nokhodchi, Ali
    PHARMACEUTICS, 2018, 10 (04):
  • [13] Personalized orodispersible films by hot melt ram extrusion 3D printing
    Musazzi, Umberto M.
    Selmin, Francesca
    Ortenzi, Marco A.
    Mohammed, Garba Khalid
    Franze, Silvia
    Minghetti, Paola
    Cilurzo, Francesco
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2018, 551 (1-2) : 52 - 59
  • [14] Fabrication of Intragastric Floating, Controlled Release 3D Printed Theophylline Tablets Using Hot-Melt Extrusion and Fused Deposition Modeling
    Giri, Bhupendra Raj
    Song, Eon Soo
    Kwon, Jaewook
    Lee, Ju-Hyun
    Park, Jun-Bom
    Kim, Dong Wuk
    PHARMACEUTICS, 2020, 12 (01)
  • [15] Investigation of poly(2-ethyl-2-oxazoline) as a novel extended release polymer for hot-melt extrusion paired with fused deposition modeling 3D printing
    Feng, Sheng
    Bandari, Suresh
    Repka, Michael A.
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2022, 74
  • [16] Fabrication of bilayer tablets using hot melt extrusion-based dual-nozzle fused deposition modeling 3D printing
    Zhang, Peilun
    Xu, Pengchong
    Chung, Sooyeon
    Bandari, Suresh
    Repka, Michael A.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2022, 624
  • [17] Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets
    Zhang, Jiaxiang
    Feng, Xin
    Patil, Hemlata
    Tiwari, Roshan V.
    Repka, Michael A.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2017, 519 (1-2) : 186 - 197
  • [18] Development of a hot-melt extrusion (HME) process to produce drug loaded Affinisol™ 15LV filaments for fused filament fabrication (FFF) 3D printing
    Prasad, Elke
    Islam, Muhammad T.
    Goodwin, Daniel J.
    Megarry, Andrew J.
    Halbert, Gavin W.
    Florence, Alastair J.
    Robertson, John
    ADDITIVE MANUFACTURING, 2019, 29
  • [19] Development of Subdermal Implants Using Direct Powder Extrusion 3D Printing and Hot-Melt Extrusion Technologies
    Derick Muhindo
    Eman A. Ashour
    Mashan Almutairi
    Michael A. Repka
    AAPS PharmSciTech, 24
  • [20] Development of Subdermal Implants Using Direct Powder Extrusion 3D Printing and Hot-Melt Extrusion Technologies
    Muhindo, Derick
    Ashour, Eman A.
    Almutairi, Mashan
    Repka, Michael A.
    AAPS PHARMSCITECH, 2023, 24 (08)