Single-Shot Phase Retrieval From a Fractional Fourier Transform Perspective

被引:6
作者
Yang, Yixiao [1 ]
Tao, Ran [1 ]
Wei, Kaixuan [2 ]
Shi, Jun [3 ]
机构
[1] Beijing Inst Technol, Dept Informat & Elect, Beijing 100081, Peoples R China
[2] King Abdullah Univ Sci & Technol KAUST, Thuwal 239556900, Saudi Arabia
[3] Harbin Inst Technol, Commun Res Ctr, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Diffraction; Phase measurement; Optical variables measurement; Optical diffraction; Computational modeling; Imaging; Adaptation models; Single-shot phase retrieval; fractional Fourier transform; Fresnel diffraction; untrained neural network; FIELD; SIGNALS;
D O I
10.1109/TSP.2024.3423784
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The realm of classical phase retrieval concerns itself with the arduous task of recovering a signal from its Fourier transform magnitude, which is fraught with inherent ambiguities. A single-exposure intensity measurement is commonly deemed insufficient for the reconstruction of the primal signal, given that the absent phase component is imperative for the inverse transformation. In this work, we present a novel single-shot phase retrieval paradigm from a fractional Fourier transform (FrFT) perspective, which involves integrating the FrFT-based physical measurement model within a self-supervised reconstruction scheme. Specifically, the proposed FrFT-based measurement model addresses the aliasing artifacts problem in the numerical calculation of Fresnel diffraction, featuring adaptability to both short-distance and long-distance propagation scenarios. Moreover, the intensity measurement in the FrFT domain proves highly effective in alleviating the ambiguities of phase retrieval and relaxing the previous conditions on oversampled or multiple measurements in the Fourier domain. Furthermore, the proposed self-supervised reconstruction approach harnesses the fast discrete algorithm of FrFT alongside untrained neural network priors, thereby attaining preeminent results. Through numerical simulations, we demonstrate that both amplitude and phase objects can be effectively retrieved from single intensity measurement using the proposed approach and provide a promising technique for support-free coherent diffraction imaging.
引用
收藏
页码:3303 / 3317
页数:15
相关论文
共 61 条
[1]   THE FRACTIONAL FOURIER-TRANSFORM AND TIME-FREQUENCY REPRESENTATIONS [J].
ALMEIDA, LB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :3084-3091
[2]  
[Anonymous], 2009, Fractional Fourier Transform and Its Applications
[3]   Fourier Phase Retrieval: Uniqueness and Algorithms [J].
Bendory, Tamir ;
Beinert, Robert ;
Eldar, Yonina C. .
COMPRESSED SENSING AND ITS APPLICATIONS, 2017, :55-91
[4]   Coherent diffractive imaging of microtubules using an X-ray laser [J].
Branden, Gisela ;
Hammarin, Greger ;
Harimoorthy, Rajiv ;
Johansson, Alexander ;
Arnlund, David ;
Malmerberg, Erik ;
Barty, Anton ;
Tangefjord, Stefan ;
Berntsen, Peter ;
DePonte, Daniel P. ;
Seuring, Carolin ;
White, Thomas A. ;
Stellato, Francesco ;
Bean, Richard ;
Beyerlein, Kenneth R. ;
Chavas, Leonard M. G. ;
Fleckenstein, Holger ;
Gati, Cornelius ;
Ghoshdastider, Umesh ;
Gumprecht, Lars ;
Oberthuer, Dominik ;
Popp, David ;
Seibert, Marvin ;
Tilp, Thomas ;
Messerschmidt, Marc ;
Williams, Garth J. ;
Loh, N. Duane ;
Chapman, Henry N. ;
Zwart, Peter ;
Liang, Mengning ;
Boutet, Sebastien ;
Robinson, Robert C. ;
Neutze, Richard .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]   The discrete fractional Fourier transform [J].
Candan, Ç ;
Kutay, MA ;
Ozaktas, HM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (05) :1329-1337
[6]   Phase retrieval from coded diffraction patterns [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Soltanolkotabi, Mandi .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 39 (02) :277-299
[7]   Phase Retrieval via Wirtinger Flow: Theory and Algorithms [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Soltanolkotabi, Mahdi .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (04) :1985-2007
[8]   DeepPhaseCut: Deep Relaxation in Phase for Unsupervised Fourier Phase Retrieval [J].
Cha, Eunju ;
Lee, Chanseok ;
Jang, Mooseok ;
Ye, Jong Chul .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) :9931-9943
[9]   Learned Hardware-in-the-loop Phase Retrieval for Holographic Near-Eye Displays [J].
Chakravarthula, Praneeth ;
Tseng, Ethan ;
Srivastava, Tarun ;
Fuchs, Henry ;
Heide, Felix .
ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (06)
[10]   Rapid 3D nanoscale coherent imaging via physics-aware deep learning [J].
Chan, Henry ;
Nashed, Youssef S. G. ;
Kandel, Saugat ;
Hruszkewycz, Stephan O. ;
Sankaranarayanan, Subramanian K. R. S. ;
Harder, Ross J. ;
Cherukara, Mathew J. .
APPLIED PHYSICS REVIEWS, 2021, 8 (02)