共 50 条
- [1] Deep Learning with Differential Privacy [J]. CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, : 308 - 318
- [2] Chen F, 2019, Arxiv, DOI arXiv:1802.07876
- [3] Chen H.-Y., 2020, arXiv
- [4] Cho Yae Jee, 2022, arXiv
- [5] Corinzia L, 2021, Arxiv, DOI arXiv:1906.06268
- [6] ] Marginal Release Under Local Differential Privacy [J]. SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 131 - 146
- [7] A Survey of Secure Multiparty Computation Protocols for Privacy Preserving Genetic Tests [J]. 2016 IEEE FIRST INTERNATIONAL CONFERENCE ON CONNECTED HEALTH: APPLICATIONS, SYSTEMS AND ENGINEERING TECHNOLOGIES (CHASE), 2016, : 173 - 182
- [8] Differential Privacy for Deep and Federated Learning: A Survey [J]. IEEE ACCESS, 2022, 10 : 22359 - 22380
- [9] Evans D., 2018, Privacy and Security, V2, P2, DOI 10.1561/3300000019
- [10] Fallah A, 2020, Arxiv, DOI arXiv:2002.07948