Comparison of deep reinforcement learning-based energy management strategies for fuel cell vehicles considering economics, durability and adaptability

被引:1
|
作者
Wang, Siyu [1 ]
Yang, Duo [1 ,2 ]
Yan, Fuhui [1 ]
Yu, Kunjie [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Peoples R China
[2] State Key Lab Intelligent Agr Power Equipment, Luoyang 471000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Energy management strategy; Fuel cell hybrid vehicles; Fuel cell; Lithium battery; Deep reinforcement learning;
D O I
10.1016/j.energy.2024.132771
中图分类号
O414.1 [热力学];
学科分类号
摘要
The energy management strategy (EMS) is the top priority to ensure the safe and efficient operation of fuel cell hybrid vehicles. Nowadays, EMSs based on deep reinforcement learning (DRL) have become a research hotspot. However, most DRL-based EMSs have not discussed the impact of algorithm hyperparameters, and have not provided a comprehensive evaluation of indicators including fuel cost, aging, and efficiency. There is a lack of a unified performance metrics for different DRL algorithms. To solve this, a comparative study of EMSs based on five DRL methods is conducted in this paper, and a multi-objective reward function that integrates hydrogen consumption, fuel cell degradation, and battery state-of-charge fluctuation is designed. First, the hyper- parameters and weight coefficients of the reward function are determined based on the algorithm convergence performance in the training process and average hydrogen consumption, respectively. Then the comprehensive performance of the above-mentioned DRL-based EMSs are compared horizontally. Finally, six driving conditions are used as test sets to explore the adaptability. The results show that the TD3-based EMS has the smallest equivalent hydrogen consumption and degradation per 100 km, which are 1165 g and 0.0651% respectively. This work can provide valid guidance for researchers to use DRL in EMS.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Twin delayed deep deterministic policy gradient-based deep reinforcement learning for energy management of fuel cell vehicle integrating durability information of powertrain
    Zhang, Yuanzhi
    Zhang, Caizhi
    Fan, Ruijia
    Huang, Shulong
    Yang, Yun
    Xu, Qianwen
    ENERGY CONVERSION AND MANAGEMENT, 2022, 274
  • [32] A novel deep reinforcement learning-based predictive energy management for fuel cell buses integrating speed and passenger prediction
    Jia, Chunchun
    He, Hongwen
    Zhou, Jiaming
    Li, Jianwei
    Wei, Zhongbao
    Li, Kunang
    Li, Menglin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 100 : 456 - 465
  • [33] Efficient training for energy management in fuel cell hybrid electric vehicles: An imitation learning-embedded deep reinforcement learning framework
    Peng, Jiankun
    Ren, Tinghui
    Chen, Zhijun
    Chen, Weiqi
    Wu, Changcheng
    Ma, Chunye
    JOURNAL OF CLEANER PRODUCTION, 2024, 447
  • [34] Energy Management Strategy for Fuel Cell/Battery/Ultracapacitor Hybrid Electric Vehicles Using Deep Reinforcement Learning With Action Trimming
    Fu, Zhumu
    Wang, Haocong
    Tao, Fazhan
    Ji, Baofeng
    Dong, Yongsheng
    Song, Shuzhong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (07) : 7171 - 7185
  • [35] Reinforcement Learning-Based Energy Optimization for a Fuel Cell Electric Vehicle
    Hou, Shengyan
    Liu, Xuan
    Yin, Hai
    Gao, Jinwu
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1928 - 1933
  • [36] Energy management of fuel cell hybrid electric bus in mountainous regions: A deep reinforcement learning approach considering terrain characteristics
    Tang, Tianfeng
    Peng, Qianlong
    Shi, Qing
    Peng, Qingguo
    Zhao, Jin
    Chen, Chaoyi
    Wang, Guangwei
    ENERGY, 2024, 311
  • [37] Energy management strategy for fuel cell electric vehicles based on scalable reinforcement learning in novel environment
    Wang, Da
    Mei, Lei
    Xiao, Feng
    Song, Chuanxue
    Qi, Chunyang
    Song, Shixin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 59 : 668 - 678
  • [38] Dyna algorithm-based reinforcement learning energy management for fuel cell hybrid engineering vehicles
    Liu, Huiying
    Yao, Yongming
    Li, Tianyu
    Du, Miaomiao
    Wang, Xiao
    Li, Haofa
    Li, Ming
    JOURNAL OF ENERGY STORAGE, 2024, 94
  • [39] A Comparative Study of Energy Management Strategies for Battery-Ultracapacitor Electric Vehicles Based on Different Deep Reinforcement Learning Methods
    Xu, Wenna
    Huang, Hao
    Wang, Chun
    Xia, Shuai
    Gao, Xinmei
    ENERGIES, 2025, 18 (05)
  • [40] Deep reinforcement learning and fuzzy logic controller codesign for energy management of hydrogen fuel cell powered electric vehicles
    Rostami, Seyed Mehdi Rakhtala
    Al-Shibaany, Zeyad
    Kay, Peter
    Karimi, Hamid Reza
    SCIENTIFIC REPORTS, 2024, 14 (01):