A Comparison between the Lower Critical Solution Temperature Behavior of Polymers and Biomacromolecules

被引:4
|
作者
Xie, Yuxin [1 ]
Li, Nan K. [1 ]
Singh, Abhishek [1 ]
Deshmukh, Sanket A. [2 ]
Yingling, Yaroslava G. [1 ]
机构
[1] North Carolina State Univ, Dept Mat Sci & Engn, 911 Partners Way, Raleigh, NC 27695 USA
[2] Virginia Tech, Dept Chem Engn, 635 Prices Fork Rd, Blacksburg, VA 24060 USA
来源
PHYSCHEM | 2022年 / 2卷 / 01期
关键词
all-atom molecular dynamics simulations; lower critical solution temperature; polymers and biopolymers; COIL-TO-GLOBULE; MOLECULAR-DYNAMICS SIMULATION; FREE-ENERGY TRANSDUCTION; N-ISOPROPYLACRYLAMIDE; VIBRATIONAL-SPECTRA; AQUEOUS-SOLUTIONS; LCST BEHAVIOR; POLY(N-ISOPROPYLACRYLAMIDE) OLIGOMERS; HYDRATION BEHAVIOR; SOLVATION DYNAMICS;
D O I
10.3390/physchem2010005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-atom molecular dynamics (MD) simulations are employed to compare the lower critical solution temperature (LCST) behaviors of poly(N-isopropylacrylamide) (PNIPAM) and elastin-like polypeptides (ELPs) with the canonical Val-Pro-Gly-Val-Gly ((VPGVG)n) sequence over a range of temperatures from 280 K to 380 K. Our simulations suggest that the structure of proximal water dictates the conformation of both the (VPGVG)n ELPs and PNIPAM chains. Specifically, the LCST transition in ELPs can be attributed to a combination of thermal disruption of the network of the proximal water near both hydrophilic and hydrophobic groups in the backbone and side-chain of (VPGVG)n, resulting in a reduction in solvent accessible surface area (SASA). This is accompanied with an increase in the secondary structure above its LCST. In the case of PNIPAM, the LCST transition is a result of a combination of a reduction in the hydrophobic SASA primarily due to the contributions of isopropyl side-chain and less to the backbone and the formation of intra-chain hydrogen bonds between the amide groups on the side-chain above its LCST.
引用
收藏
页码:52 / 71
页数:20
相关论文
共 50 条
  • [31] Lower critical solution temperature behavior of amphiphilic copolymers based on polvaspartamide derivatives
    Bach, Quang Vu
    Moon, Jong-Rok
    Lee, Doo Sung
    Kim, Ji-Heung
    JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 107 (01) : 509 - 513
  • [32] LOWER CRITICAL SOLUTION TEMPERATURE BEHAVIOR OF ETHYLENE PROPYLENE COPOLYMERS IN MULTICOMPONENT SOLVENTS
    IRANI, CA
    COZEWITH, C
    JOURNAL OF APPLIED POLYMER SCIENCE, 1986, 31 (06) : 1879 - 1899
  • [33] Lower Critical Solution Temperature Phase Behavior of Natural Rubber/Polybutadiene Blend
    Seiichi Kawahara
    Yasuhiro Asada
    Yoshinobu Isono
    Kiyoshige Muraoka
    Yasuhisa Minagawa
    Polymer Journal, 2002, 34 : 1 - 8
  • [34] Tuning the critical solution temperature of polymers by copolymerization
    Schulz, Bernhard
    Chudoba, Richard
    Heyda, Jan
    Dzubiella, Joachim
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (24):
  • [35] Main chain and chain end functional polyacetals: pH degradable water soluble polymers with extraordinary lower critical solution temperature behavior
    Balaj, Rebecca
    Samanta, Sanjoy
    Koberstein, Jeffrey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [36] UPPER AND LOWER CRITICAL SOLUTION TEMPERATURE BEHAVIOR IN POLYMER BLENDS AND ITS THERMODYNAMIC INTERPRETATION
    KAMMER, HW
    INOUE, T
    OUGIZAWA, T
    POLYMER, 1989, 30 (05) : 888 - 892
  • [37] A Discrete Amphiphilic Organoplatinum(II) Metallacycle with Tunable Lower Critical Solution Temperature Behavior
    Wei, Peifa
    Cook, Timothy R.
    Yan, Xuzhou
    Huang, Feihe
    Stang, Peter J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (44) : 15497 - 15500
  • [38] A structural underpinning of the lower critical solution temperature (LCST) behavior behind temperature-switchable liquids
    Billinge, Ian H.
    Barbosa, Gabriel D.
    Tao, Songsheng
    Terban, Maxwell W.
    Turner, C. Heath
    Billinge, Simon J. L.
    Yip, Ngai Yin
    MATTER, 2025, 8 (01)
  • [39] Thermoresponsive dendronized polymers with tunable lower critical solution temperatures
    Li, Wen
    Zhang, Afang
    Schlueter, A. Dieter
    CHEMICAL COMMUNICATIONS, 2008, (43) : 5523 - 5525
  • [40] Thermoresponsive Polymers with Lower Critical Solution Temperature- or Upper Critical Solution Temperature-Type Phase Behaviour Do Not Induce Toxicity to Human Endothelial Cells
    Ji, Yuejia
    Zhu, Mengxiang
    Gong, Yu
    Tang, Haoyu
    Li, Juan
    Cao, Yi
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2017, 120 (01) : 79 - 85