A Comparison between the Lower Critical Solution Temperature Behavior of Polymers and Biomacromolecules

被引:4
|
作者
Xie, Yuxin [1 ]
Li, Nan K. [1 ]
Singh, Abhishek [1 ]
Deshmukh, Sanket A. [2 ]
Yingling, Yaroslava G. [1 ]
机构
[1] North Carolina State Univ, Dept Mat Sci & Engn, 911 Partners Way, Raleigh, NC 27695 USA
[2] Virginia Tech, Dept Chem Engn, 635 Prices Fork Rd, Blacksburg, VA 24060 USA
来源
PHYSCHEM | 2022年 / 2卷 / 01期
关键词
all-atom molecular dynamics simulations; lower critical solution temperature; polymers and biopolymers; COIL-TO-GLOBULE; MOLECULAR-DYNAMICS SIMULATION; FREE-ENERGY TRANSDUCTION; N-ISOPROPYLACRYLAMIDE; VIBRATIONAL-SPECTRA; AQUEOUS-SOLUTIONS; LCST BEHAVIOR; POLY(N-ISOPROPYLACRYLAMIDE) OLIGOMERS; HYDRATION BEHAVIOR; SOLVATION DYNAMICS;
D O I
10.3390/physchem2010005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-atom molecular dynamics (MD) simulations are employed to compare the lower critical solution temperature (LCST) behaviors of poly(N-isopropylacrylamide) (PNIPAM) and elastin-like polypeptides (ELPs) with the canonical Val-Pro-Gly-Val-Gly ((VPGVG)n) sequence over a range of temperatures from 280 K to 380 K. Our simulations suggest that the structure of proximal water dictates the conformation of both the (VPGVG)n ELPs and PNIPAM chains. Specifically, the LCST transition in ELPs can be attributed to a combination of thermal disruption of the network of the proximal water near both hydrophilic and hydrophobic groups in the backbone and side-chain of (VPGVG)n, resulting in a reduction in solvent accessible surface area (SASA). This is accompanied with an increase in the secondary structure above its LCST. In the case of PNIPAM, the LCST transition is a result of a combination of a reduction in the hydrophobic SASA primarily due to the contributions of isopropyl side-chain and less to the backbone and the formation of intra-chain hydrogen bonds between the amide groups on the side-chain above its LCST.
引用
收藏
页码:52 / 71
页数:20
相关论文
共 50 条
  • [1] PROCEDURE FOR PREDICTING LOWER CRITICAL SOLUTION TEMPERATURE BEHAVIOR IN BINARY BLENDS OF POLYMERS
    RODGERS, PA
    PAUL, DR
    BARLOW, JW
    MACROMOLECULES, 1991, 24 (14) : 4101 - 4109
  • [2] ADSORPTION BEHAVIOR OF WATER-SOLUBLE POLYMERS WITH LOWER CRITICAL SOLUTION TEMPERATURE
    FURUSAWA, K
    TAGAWA, T
    COLLOID AND POLYMER SCIENCE, 1985, 263 (05) : 353 - 360
  • [3] Transport Functions of Polymers with a Lower Critical Solution Temperature
    Valuev, I. L.
    Vanchugova, L. V.
    Valuev, L. I.
    POLYMER SCIENCE SERIES B, 2019, 61 (04) : 430 - 432
  • [4] Transport Functions of Polymers with a Lower Critical Solution Temperature
    I. L. Valuev
    L. V. Vanchugova
    L. I. Valuev
    Polymer Science, Series B, 2019, 61 : 430 - 432
  • [5] SACCHARIDE EFFECT ON THE LOWER CRITICAL SOLUTION TEMPERATURE OF THERMOSENSITIVE POLYMERS
    KIM, YH
    KWON, IC
    BAE, YH
    KIM, SW
    MACROMOLECULES, 1995, 28 (04) : 939 - 944
  • [6] TEMPERATURE-DEPENDENT ADSORPTION/DESORPTION BEHAVIOR OF LOWER CRITICAL SOLUTION TEMPERATURE (LCST) POLYMERS AN VARIOUS SUBSTRATES
    MIURA, M
    COLE, CA
    MONJI, N
    HOFFMAN, AS
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 1994, 5 (06) : 555 - 568
  • [8] Tuning the lower critical solution temperature of thermoresponsive polymers by biospecific recognition
    Buller, Jens
    Laschewsky, Andre
    Lutz, Jean-Francois
    Wischerhoff, Erik
    POLYMER CHEMISTRY, 2011, 2 (07) : 1486 - 1489
  • [9] EFFECT OF POLYELECTROLYTES ON THE LOWER CRITICAL SOLUTION TEMPERATURE OF IONIZABLE, THERMOSENSITIVE POLYMERS
    FEIL, H
    BAE, YH
    FEIJEN, J
    KIM, SW
    MAKROMOLEKULARE CHEMIE-RAPID COMMUNICATIONS, 1993, 14 (08): : 465 - 470
  • [10] UPPER AND LOWER CRITICAL SOLUTION TEMPERATURE BEHAVIOR IN POLYMER BLENDS
    OUGIZAWA, T
    INOUE, T
    KAMMER, HW
    MACROMOLECULES, 1985, 18 (10) : 2089 - 2092