Oligomer Formation by Physiologically Relevant C-Terminal Isoforms of Amyloid β-Protein

被引:0
|
作者
Pandey, Rachit [1 ]
Urbanc, Brigita [1 ]
机构
[1] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA
关键词
amyloid beta-protein; Alzheimer's disease; discrete molecular dynamics; DISCRETE MOLECULAR-DYNAMICS; ALZHEIMERS-DISEASE; SH3; DOMAIN; A-BETA-42; MODEL; AGGREGATION; ELUCIDATION; THERMODYNAMICS; SIMULATION; HYPOTHESIS;
D O I
10.3390/biom14070774
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alzheimer's disease (AD) is a neurological disorder associated with amyloid beta-protein (A beta) assembly into toxic oligomers. In addition to the two predominant alloforms, A beta(1-40) and A beta(1-42), other C-terminally truncated A beta peptides, including A beta(1-38) and A beta(1-43), are produced in the brain. Here, we use discrete molecular dynamics (DMD) and a four-bead protein model with amino acid-specific hydropathic interactions, DMD4B-HYDRA, to examine oligomer formation of A beta(1-38), A beta(1-40), A beta(1-42), and A beta(1-43). Self-assembly of 32 unstructured monomer peptides into oligomers is examined using 32 replica DMD trajectories for each of the four peptides. In a quasi-steady state, A beta(1-38) and A beta(1-40) adopt similar unimodal oligomer size distributions with a maximum at trimers, whereas A beta(1-42) and A beta(1-43) oligomer size distributions are multimodal with the dominant maximum at trimers or tetramers, and additional maxima at hexamers and unidecamers (for A beta(1-42)) or octamers and pentadecamers (for A beta(1-43)). The free energy landscapes reveal isoform- and oligomer-order specific structural and morphological features of oligomer ensembles. Our results show that oligomers of each of the four isoforms have unique features, with A beta(1-42) alone resulting in oligomers with disordered and solvent-exposed N-termini. Our findings help unravel the structure-function paradigm governing oligomers formed by various A beta isoforms.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Oligomer formation by naturally occurring C-terminal isoforms of amyloid β-protein
    Pandey, Rachit
    Urbanc, Brigita
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 73A - 73A
  • [2] Amyloid β-Protein C-Terminal Fragments: Formation of Cylindrins and β-Barrels
    Do, Thanh D.
    LaPointe, Nichole E.
    Nelson, Rebecca
    Krotee, Pascal
    Hayden, Eric Y.
    Ulrich, Brittany
    Quan, Sarah
    Feinstein, Stuart C.
    Teplow, David B.
    Eisenberg, David
    Shea, Joan-Emma
    Bowers, Michael T.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (02) : 549 - 557
  • [3] Prion Protein Amyloid Formation Involves Structural Rearrangements in the C-Terminal Domain
    Kumar, Jitendra
    Sreeramulu, Sridhar
    Schmidt, Thorsten L.
    Richter, Christian
    Vonck, Janet
    Heckel, Alexander
    Glaubitz, Clemens
    Schwalbe, Harald
    CHEMBIOCHEM, 2010, 11 (09) : 1208 - 1213
  • [4] C-terminal fragment of amyloid precursor protein induces astrocytosis
    Bach, JH
    Chae, HS
    Rah, JC
    Lee, MW
    Park, CH
    Choi, SH
    Choi, JK
    Lee, SH
    Kim, YS
    Kim, KY
    Lee, WB
    Suh, YH
    Kim, SS
    JOURNAL OF NEUROCHEMISTRY, 2001, 78 (01) : 109 - 120
  • [5] Presenilin complexes with the C-terminal fragments of amyloid precursor protein at the sites of amyloid β-protein generation
    Xia, WM
    Ray, WJ
    Ostaszewski, BL
    Rahmati, T
    Kimberly, WT
    Wolfe, MS
    Zhang, JM
    Goate, AM
    Selkoe, DJ
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) : 9299 - 9304
  • [6] C-terminal motifs in promyelocytic leukemia protein isoforms critically regulate PML nuclear body formation
    Li, Chuang
    Peng, Qiongfang
    Wan, Xiao
    Sun, Haili
    Tang, Jun
    JOURNAL OF CELL SCIENCE, 2017, 130 (20) : 3496 - 3506
  • [7] Mechanism of C-Terminal Fragments of Amyloid β-Protein as Aβ Inhibitors: Do C-Terminal Interactions Play a Key Role in Their Inhibitory Activity?
    Zheng, Xueyun
    Wu, Chun
    Liu, Deyu
    Li, Huiyuan
    Bitan, Gal
    Shea, Joan-Emma
    Bowers, Michael T.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (08): : 1615 - 1623
  • [8] Role of the C-terminal amino acids of β2-microglobulin amyloid formation
    Kim, J.
    Motomiya, Y.
    Nakamura, M.
    Ueda, M.
    Saito, S.
    Obayashi, K.
    Meng, W.
    Ando, Y.
    AMYLOID-JOURNAL OF PROTEIN FOLDING DISORDERS, 2006, 13 : 36 - 37
  • [9] Role of the C-terminal amino acids in β2-microglobulin amyloid formation
    Kim, J.
    Motomiya, Y.
    Nakamura, M.
    Ueda, M.
    Saito, S.
    Misumi, Y.
    Himeno, S.
    Obayashi, K.
    Shinriki, S.
    Meng, W.
    Semba, U.
    Kai, H.
    Ando, Y.
    XIth International Symposium on Amyloidosis, 2008, : 16 - 18
  • [10] Tryptophan Probes of TDP-43 C-Terminal Domain Amyloid Formation
    Shuster, Sydney O.
    Lee, Jennifer C.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (15): : 3781 - 3789