MULTI-TARGET DETECTION METHOD FOR MAIZE PESTS BASED ON IMPROVED YOLOv8

被引:1
|
作者
Liang, Qiuyan [1 ]
Zhao, Zihan [1 ]
Sun, Jingye [1 ]
Jiang, Tianyue [2 ]
Guo, Ningning [1 ]
Yu, Haiyang [1 ]
Ge, Yiyuan [1 ]
机构
[1] Jiamusi Univ, Sch Mech Engn, Jiamusi, Heilongjiang, Peoples R China
[2] Jiamusi Univ, Coll Informat & Elect Technol, Jiamusi, Heilongjiang, Peoples R China
来源
INMATEH-AGRICULTURAL ENGINEERING | 2024年 / 73卷 / 02期
关键词
object detection; maize pests; yolov8; DAttention; SCConv; REGION DETECTION;
D O I
10.35633/inmateh-73-19
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
When maize is afflicted by pests and diseases, it can lead to a drastic reduction in yield, causing significant economic losses to farmers. Therefore, accurate and efficient detection of maize pest species is crucial for targeted pest control during the management process. To achieve precise detection of maize pest species, this paper proposes a deep learning detection algorithm for maize pests based on an improved YOLOv8n model: Firstly, a maize pest dataset was constructed, comprising 2,756 images of maize pests, according to the types of pests and diseases. Secondly, a deformable attention mechanism (DAttention) was introduced into the backbone network to enhance the model's capability to extract features from images of maize pests. Thirdly, spatial and channel recombination convolution (SCConv) was incorporated into the feature fusion network to reduce the miss rate of small-scale pests. Lastly, the improved model was trained and tested using the newly constructed maize pest dataset. Experimental results demonstrate that the improved model achieved a detection average precision (mAP) of 94.8% at a speed of 171 frames per second (FPS), balancing accuracy and efficiency. The improved model can be deployed in low-computing-power mobile devices to achieve realtime detection, and in the future, more types of maize pests can be detected by adding multi-category datasets and training with new models with more computational power, which is important for the healthy development of maize agriculture
引用
收藏
页码:227 / 238
页数:12
相关论文
共 50 条
  • [41] Surface Defect Detection Method for Hot-rolled Strip Steel Based on Improved YOLOv8
    Xiao, Ke
    Yang, Xinyu
    Han, Yanfeng
    Song, Bin
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2024, 51 (12): : 67 - 77
  • [42] Research on improved YOLOv8 algorithm for insulator defect detection
    Lin Zhang
    Boqun Li
    Yang Cui
    Yushan Lai
    Jing Gao
    Journal of Real-Time Image Processing, 2024, 21
  • [43] Research on improved YOLOv8 algorithm for insulator defect detection
    Zhang, Lin
    Li, Boqun
    Cui, Yang
    Lai, Yushan
    Gao, Jing
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (01)
  • [44] FishFocusNet: An improved method based on YOLOv8 for underwater tropical fish identification
    Lu, Zhaoxuan
    Zhu, Xiaolong
    Guo, Haitao
    Xie, Xingang
    Chen, Xiangzi
    Quan, Xiangqian
    IET IMAGE PROCESSING, 2024, 18 (12) : 3634 - 3649
  • [45] Improved Ship Detection with YOLOv8 Enhanced with MobileViT and GSConv
    Zhao, Xuemeng
    Song, Yinglei
    ELECTRONICS, 2023, 12 (22)
  • [46] RCT-YOLOv8: A Tuna Detection Model for Distant-Water Fisheries Based on Improved YOLOv8
    Zhou, Qingyi
    Liu, Yuqing
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2024, 28 (06) : 1273 - 1283
  • [47] DPH-YOLOv8: Improved YOLOv8 Based on Double Prediction Heads for the UAV Image Object Detection
    Wang, Jian
    Li, Xinqi
    Chen, Jiafu
    Zhou, Lihui
    Guo, Linyang
    He, Zihao
    Zhou, Hao
    Zhang, Zechen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [48] LP-YOLO: A Lightweight Object Detection Network Regarding Insect Pests for Mobile Terminal Devices Based on Improved YOLOv8
    Yu, Yue
    Zhou, Qi
    Wang, Hao
    Lv, Ke
    Zhang, Lijuan
    Li, Jian
    Li, Dongming
    AGRICULTURE-BASEL, 2024, 14 (08):
  • [49] Improved Lightweight YOLOv8 Model for Rice Disease Detection in Multi-Scale Scenarios
    Wang, Jinfeng
    Ma, Siyuan
    Wang, Zhentao
    Ma, Xinhua
    Yang, Chunhe
    Chen, Guoqing
    Wang, Yijia
    AGRONOMY-BASEL, 2025, 15 (02):
  • [50] Optimized YOLOv8 for multi-scale object detection
    Rasheed, Areeg Fahad
    Zarkoosh, M.
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (01)