MULTI-TARGET DETECTION METHOD FOR MAIZE PESTS BASED ON IMPROVED YOLOv8

被引:1
|
作者
Liang, Qiuyan [1 ]
Zhao, Zihan [1 ]
Sun, Jingye [1 ]
Jiang, Tianyue [2 ]
Guo, Ningning [1 ]
Yu, Haiyang [1 ]
Ge, Yiyuan [1 ]
机构
[1] Jiamusi Univ, Sch Mech Engn, Jiamusi, Heilongjiang, Peoples R China
[2] Jiamusi Univ, Coll Informat & Elect Technol, Jiamusi, Heilongjiang, Peoples R China
来源
INMATEH-AGRICULTURAL ENGINEERING | 2024年 / 73卷 / 02期
关键词
object detection; maize pests; yolov8; DAttention; SCConv; REGION DETECTION;
D O I
10.35633/inmateh-73-19
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
When maize is afflicted by pests and diseases, it can lead to a drastic reduction in yield, causing significant economic losses to farmers. Therefore, accurate and efficient detection of maize pest species is crucial for targeted pest control during the management process. To achieve precise detection of maize pest species, this paper proposes a deep learning detection algorithm for maize pests based on an improved YOLOv8n model: Firstly, a maize pest dataset was constructed, comprising 2,756 images of maize pests, according to the types of pests and diseases. Secondly, a deformable attention mechanism (DAttention) was introduced into the backbone network to enhance the model's capability to extract features from images of maize pests. Thirdly, spatial and channel recombination convolution (SCConv) was incorporated into the feature fusion network to reduce the miss rate of small-scale pests. Lastly, the improved model was trained and tested using the newly constructed maize pest dataset. Experimental results demonstrate that the improved model achieved a detection average precision (mAP) of 94.8% at a speed of 171 frames per second (FPS), balancing accuracy and efficiency. The improved model can be deployed in low-computing-power mobile devices to achieve realtime detection, and in the future, more types of maize pests can be detected by adding multi-category datasets and training with new models with more computational power, which is important for the healthy development of maize agriculture
引用
收藏
页码:227 / 238
页数:12
相关论文
共 50 条
  • [31] Small target detection in UAV view based on improved YOLOv8 algorithm
    Zhang, Xiaoli
    Zuo, Guocai
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [32] Lightweight Road Damage Detection Method Based on Improved YOLOv8
    Xu, Tiefeng
    Huang, He
    Zhang, Hongmin
    Niu, Xiaofu
    Computer Engineering and Applications, 60 (14): : 175 - 186
  • [33] Small-Target Detection Based on Improved YOLOv8 for Infrared Imagery
    Wang, Huicong
    Ma, Kaijun
    Yue, Juan
    Li, Yuhan
    Huang, Jiaxin
    Liu, Jie
    Li, Linhan
    Wang, Xiaoyu
    Cai, Nengbin
    Gao, Sili
    ELECTRONICS, 2025, 14 (05):
  • [34] Improved YOLOv8 Lightweight UAV Target Detection Algorithm
    Hu, Junfeng
    Li, Baicong
    Zhu, Hao
    Huang, Xiaowen
    Computer Engineering and Applications, 2024, 60 (08) : 182 - 191
  • [35] Improved YOLOv8 Aerial Small Target Detection Method: CRP-YOLO
    Zhao, Zhihong
    Hao, Ziye
    Computer Engineering and Applications, 2024, 60 (13) : 209 - 218
  • [36] Detection of Coal and Gangue Based on Improved YOLOv8
    Zeng, Qingliang
    Zhou, Guangyu
    Wan, Lirong
    Wang, Liang
    Xuan, Guantao
    Shao, Yuanyuan
    SENSORS, 2024, 24 (04)
  • [37] Vehicle Detection and Tracking Based on Improved YOLOv8
    Liu, Yunxiang
    Shen, Shujun
    IEEE ACCESS, 2025, 13 : 24793 - 24803
  • [38] RA-YOLOv8: An Improved YOLOv8 Seal Text Detection Method
    Sun, Han
    Tan, Chaohong
    Pang, Si
    Wang, Hancheng
    Huang, Baohua
    ELECTRONICS, 2024, 13 (15)
  • [39] Ship Detection Based on Improved YOLOv8 Algorithm
    Cao, Xintong
    Shen, Jiayu
    Wang, Tao
    Zhang, Chenxu
    2024 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, ARTIFICIAL INTELLIGENCE AND INTELLIGENT CONTROL, RAIIC 2024, 2024, : 20 - 23
  • [40] A wildfire smoke detection based on improved YOLOv8
    Zhou, Jieyang
    Li, Yang
    Yin, Pengfei
    International Journal of Information and Communication Technology, 2024, 25 (06) : 52 - 67