MULTI-TARGET DETECTION METHOD FOR MAIZE PESTS BASED ON IMPROVED YOLOv8

被引:1
|
作者
Liang, Qiuyan [1 ]
Zhao, Zihan [1 ]
Sun, Jingye [1 ]
Jiang, Tianyue [2 ]
Guo, Ningning [1 ]
Yu, Haiyang [1 ]
Ge, Yiyuan [1 ]
机构
[1] Jiamusi Univ, Sch Mech Engn, Jiamusi, Heilongjiang, Peoples R China
[2] Jiamusi Univ, Coll Informat & Elect Technol, Jiamusi, Heilongjiang, Peoples R China
来源
INMATEH-AGRICULTURAL ENGINEERING | 2024年 / 73卷 / 02期
关键词
object detection; maize pests; yolov8; DAttention; SCConv; REGION DETECTION;
D O I
10.35633/inmateh-73-19
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
When maize is afflicted by pests and diseases, it can lead to a drastic reduction in yield, causing significant economic losses to farmers. Therefore, accurate and efficient detection of maize pest species is crucial for targeted pest control during the management process. To achieve precise detection of maize pest species, this paper proposes a deep learning detection algorithm for maize pests based on an improved YOLOv8n model: Firstly, a maize pest dataset was constructed, comprising 2,756 images of maize pests, according to the types of pests and diseases. Secondly, a deformable attention mechanism (DAttention) was introduced into the backbone network to enhance the model's capability to extract features from images of maize pests. Thirdly, spatial and channel recombination convolution (SCConv) was incorporated into the feature fusion network to reduce the miss rate of small-scale pests. Lastly, the improved model was trained and tested using the newly constructed maize pest dataset. Experimental results demonstrate that the improved model achieved a detection average precision (mAP) of 94.8% at a speed of 171 frames per second (FPS), balancing accuracy and efficiency. The improved model can be deployed in low-computing-power mobile devices to achieve realtime detection, and in the future, more types of maize pests can be detected by adding multi-category datasets and training with new models with more computational power, which is important for the healthy development of maize agriculture
引用
收藏
页码:227 / 238
页数:12
相关论文
共 50 条
  • [31] SES-YOLOv8n: automatic driving object detection algorithm based on improved YOLOv8
    Sun, Yang
    Zhang, Yuhang
    Wang, Haiyang
    Guo, Jianhua
    Zheng, Jiushuai
    Ning, Haonan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 3983 - 3992
  • [32] Dense detection algorithm for ceramic tile defects based on improved YOLOv8
    Yu, Mei
    Li, Yuxin
    Li, Zhilin
    Yan, Peng
    Li, Xiutong
    Tian, Qin
    Xie, Benliang
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024,
  • [33] HR-YOLOv8: A Crop Growth Status Object Detection Method Based on YOLOv8
    Zhang, Jin
    Yang, Wenzhong
    Lu, Zhifeng
    Chen, Danny
    ELECTRONICS, 2024, 13 (09)
  • [34] A Soybean Pod Accuracy Detection and Counting Model Based on Improved YOLOv8
    Jia, Xiaofei
    Hua, Zhenlu
    Shi, Hongtao
    Zhu, Dan
    Han, Zhongzhi
    Wu, Guangxia
    Deng, Limiao
    AGRICULTURE-BASEL, 2025, 15 (06):
  • [35] YOLOv8-Coal: a coal-rock image recognition method based on improved YOLOv8
    Wang, Wenyu
    Zhao, Yanqin
    Xue, Zhi
    PeerJ Computer Science, 2024, 10
  • [36] Visual detection method for vaccine embryo vitality based on YOLOv8
    Cai, Jianrong
    Zhu, Wenhui
    Qiao, Yu
    Li, Qiyang
    Liang, Xiaoxiang
    Yang, Xiaonan
    Pan, Bingke
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (21): : 274 - 284
  • [37] Detection of Mulberry Leaf Diseases in Natural Environments Based on Improved YOLOv8
    Zhang, Ming
    Yuan, Chang
    Liu, Qinghua
    Liu, Hongrui
    Qiu, Xiulin
    Zhao, Mengdi
    FORESTS, 2024, 15 (07):
  • [38] YOLOv8-Coal: a coal-rock image recognition method based on improved YOLOv8
    Wang, Wenyu
    Zhao, Yanqin
    Xue, Zhi
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [39] Fish Catch Sorting and Detection Model Improved Based on YOLOv8 Model
    Yang, Ping
    Shi, Tiange
    Yuan, Youdong
    Jiang, Hanbing
    INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (04): : 1291 - 1310
  • [40] Lightweight rail surface defect detection algorithm based on an improved YOLOv8
    Xu, CanYang
    Liao, Yingying
    Liu, Yongqiang
    Tian, Runliang
    Guo, Tao
    MEASUREMENT, 2025, 242