Solving clustered low-rank semidefinite programs arising from polynomial optimization

被引:2
作者
Leijenhorst, Nando [1 ]
de Laat, David [1 ]
机构
[1] Delft Univ Technol, Mekelweg 4, NL-2628 CD Delft, Netherlands
关键词
Semidefinite programming; Primal-dual interior point method; Low-rank constraints; Symmetry reduction; Packing problems; Sum-of-squares polynomials; INTERIOR-POINT METHODS; SPHERE PACKING PROBLEM; UPPER-BOUNDS; IMPLEMENTATION; SUMS;
D O I
10.1007/s12532-024-00264-w
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study a primal-dual interior point method specialized to clustered low-rank semidefinite programs requiring high precision numerics, which arise from certain multivariate polynomial (matrix) programs through sums-of-squares characterizations and sampling. We consider the interplay of sampling and symmetry reduction as well as a greedy method to obtain numerically good bases and sample points. We apply this to the computation of three-point bounds for the kissing number problem, for which we show a significant speedup. This allows for the computation of improved kissing number bounds in dimensions 11 through 23. The approach performs well for problems with bad numerical conditioning, which we show through new computations for the binary sphere packing problem.
引用
收藏
页码:503 / 534
页数:32
相关论文
共 46 条
[1]  
[Anonymous], 1960, Rendiconti del Circolo Matematico di Palermo, DOI DOI 10.1007/BF02851249
[2]   New upper bounds for kissing numbers from semidefinite programming [J].
Bachoc, Christine ;
Vallentin, Frank .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (03) :909-924
[3]  
Benson S.J., 2005, ACM T MATH SOFTWARE, V21
[4]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[5]   CSDP, a C library for semidefinite programming [J].
Borchers, B .
OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4) :613-623
[6]   Pair correlation estimates for the zeros of the zeta function via semidefinite programming [J].
Chirre, Andres ;
Goncalves, Felipe ;
de Laat, David .
ADVANCES IN MATHEMATICS, 2020, 361
[7]   LATTICES ADMITTING UNIQUE LAGRANGE INTERPOLATIONS [J].
CHUNG, KC ;
YAO, TH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (04) :735-743
[8]   New upper bounds on sphere packings I [J].
Cohn, H ;
Elkies, N .
ANNALS OF MATHEMATICS, 2003, 157 (02) :689-714
[9]   The sphere packing problem in dimension 24 [J].
Cohn, Henry ;
Kumar, Abhinav ;
Miller, Stephen D. ;
Radchenko, Danylo ;
Viazovska, Maryna .
ANNALS OF MATHEMATICS, 2017, 185 (03) :1017-1033
[10]   THREE-POINT BOUNDS FOR ENERGY MINIMIZATION [J].
Cohn, Henry ;
Woo, Jeechul .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 25 (04) :929-958