Projective integration methods in the Runge-Kutta framework and the extension to adaptivity in time

被引:0
|
作者
Koellermeier, Julian [1 ]
Samaey, Giovanni [2 ]
机构
[1] Univ Groningen, Bernoulli Inst, Groningen, Netherlands
[2] Katholieke Univ Leuven, Dept Comp Sci, Leuven, Belgium
关键词
Stiff ODEs; Projective integration; Runge-Kutta method; Embedded scheme; DIFFERENTIAL-EQUATIONS; SCHEMES; CONVERGENCE;
D O I
10.1016/j.cam.2024.116147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Projective Integration methods are explicit time integration schemes for stiff ODEs with large spectral gaps. In this paper, we show that all existing Projective Integration methods can be written as Runge-Kutta methods with an extended Butcher tableau including many stages. We prove consistency and order conditions of the Projective Integration methods using the Runge-Kutta framework. Spatially adaptive Projective Integration methods are included via partitioned Runge-Kutta methods. New time adaptive Projective Integration schemes are derived via embedded Runge-Kutta methods and step size variation while their accuracy, stability, convergence, and error estimators are investigated analytically and numerically.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] A COMPARISON OF EXPLICIT RUNGE-KUTTA METHODS
    Walters, Stephen J.
    Turner, Ross J.
    Forbes, Lawrence K.
    ANZIAM JOURNAL, 2022, 64 (03) : 227 - 249
  • [2] Integration method and Runge-Kutta method
    Sanprasert, Wannaporn
    Chundang, Ungsana
    Podisuk, Maitree
    PROCEEDINGS OF THE 15TH AMERICAN CONFERENCE ON APPLIED MATHEMATICS AND PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES 2009, VOLS I AND II, 2009, : 232 - +
  • [3] Embedded additive Runge-Kutta methods
    Sayfy, A
    Aburub, A
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (08) : 945 - 953
  • [4] Volume preservation by Runge-Kutta methods
    Bader, Philipp
    McLaren, David I.
    Quispel, G. R. W.
    Webb, Marcus
    APPLIED NUMERICAL MATHEMATICS, 2016, 109 : 123 - 137
  • [5] Efficient symplectic Runge-Kutta methods
    Chan, RPK
    Liu, HY
    Sun, G
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 908 - 924
  • [6] Exponentially fitted Runge-Kutta methods
    Vanden Berghe, G
    De Meyer, H
    Van Daele, M
    Van Hecke, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 107 - 115
  • [7] The interpolation property of the Runge-Kutta methods
    Skvortsov L.M.
    Mathematical Models and Computer Simulations, 2009, 1 (6) : 695 - 703
  • [8] Equilibrium attractivity of Runge-Kutta methods
    Schmitt, BA
    Weiner, R
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (01) : 327 - 348
  • [9] Explicit stabilized Runge-Kutta methods
    Skvortsov, L. M.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (07) : 1153 - 1166
  • [10] Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrom methods
    Blanes, S
    Moan, PC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 142 (02) : 313 - 330