Deep Learning-Based Image Classification and Segmentation on Digital Histopathology for Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis

被引:0
|
作者
Pirayesh, Zeynab [1 ,2 ]
Mohammad-Rahimi, Hossein [2 ]
Ghasemi, Nikoo [1 ]
Motamedian, Saeed-Reza [2 ,3 ]
Sadeghi, Terme Sarrafan [3 ]
Koohi, Hediye [3 ]
Rokhshad, Rata [2 ]
Lotfi, Shima Moradian [3 ]
Najafi, Anahita [4 ]
Alajaji, Shahd A. [5 ,6 ,7 ]
Khoury, Zaid H. [8 ]
Jessri, Maryam [9 ,10 ]
Sultan, Ahmed S. [5 ,7 ,11 ]
机构
[1] Zanjan Univ Med Sci, Sch Dent, Dept Orthodont & Dentofacial Orthoped, Zanjan, Iran
[2] ITU WHO Focus Grp AI Hlth, Top Grp Dent Diagnost & Digital Dent, Berlin, Germany
[3] Shahid Beheshti Univ Med Sci, Res Inst Dent Sci, Dentofacial Deform Res Ctr, Tehran, Iran
[4] Univ Tehran Med Sci, Sch Med, MD MPH, Tehran, Iran
[5] Univ Maryland, Sch Dent, Dept Oncol & Diagnost Sci, Baltimore, MD 21201 USA
[6] King Saud Univ, Coll Dent, Dept Oral Med & Diagnost Sci, Riyadh, Saudi Arabia
[7] Univ Maryland, Sch Dent, Div Artificial Intelligence Res, Baltimore, MD 21201 USA
[8] Meharry Med Coll, Sch Dent, Dept Oral Diagnost Sci & Res, Nashville, TN USA
[9] Univ Queensland, Sch Dent, Oral Med & Pathol Dept, Herston, Qld, Australia
[10] Queensland Hlth, Metro North Hosp & Hlth Serv, Oral Med Dept, Brisbane, Qld, Australia
[11] Univ Maryland, Marlene & Stewart Greenebaum Comprehens Canc Ctr, Baltimore, MD 21201 USA
关键词
artificial intelligence; deep learning; histopathology; image classification; image segmentation; meta-analysis; oral squamous cell carcinoma; systematic review; EARLY-DIAGNOSIS; IDENTIFICATION;
D O I
10.1111/jop.13578
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
BackgroundArtificial intelligence (AI)-based tools have shown promise in histopathology image analysis in improving the accuracy of oral squamous cell carcinoma (OSCC) detection with intent to reduce human error.ObjectivesThis systematic review and meta-analysis evaluated deep learning (DL) models for OSCC detection on histopathology images by assessing common diagnostic performance evaluation metrics for AI-based medical image analysis studies.MethodsDiagnostic accuracy studies that used DL models for the analysis of histopathological images of OSCC compared to the reference standard were analyzed. Six databases (PubMed, Google Scholar, Scopus, Embase, ArXiv, and IEEE) were screened for publications without any time limitation. The QUADAS-2 tool was utilized to assess quality. The meta-analyses included only studies that reported true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) in their test sets.ResultsOf 1267 screened studies, 17 studies met the final inclusion criteria. DL methods such as image classification (n = 11) and segmentation (n = 3) were used, and some studies used combined methods (n = 3). On QUADAS-2 assessment, only three studies had a low risk of bias across all applicability domains. For segmentation studies, 0.97 was reported for accuracy, 0.97 for sensitivity, 0.98 for specificity, and 0.92 for Dice. For classification studies, accuracy was reported as 0.99, sensitivity 0.99, specificity 1.0, Dice 0.95, F1 score 0.98, and AUC 0.99. Meta-analysis showed pooled estimates of 0.98 sensitivity and 0.93 specificity.ConclusionApplication of AI-based classification and segmentation methods on image analysis represents a fundamental shift in digital pathology. DL approaches demonstrated significantly high accuracy for OSCC detection on histopathology, comparable to that of human experts in some studies. Although AI-based models cannot replace a well-trained pathologist, they can assist through improving the objectivity and repeatability of the diagnosis while reducing variability and human error as a consequence of pathologist burnout.
引用
收藏
页码:551 / 566
页数:16
相关论文
共 50 条
  • [21] Salivary biomarkers and their efficacies as diagnostic tools for Oral Squamous Cell Carcinoma: Systematic review and meta-analysis
    Gaba, Fariah I.
    Sheth, Chirag C.
    Veses, Veronica
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2021, 50 (03) : 299 - 307
  • [22] Image Analysis of Nuclei Histopathology Using Deep Learning: A Review of Segmentation, Detection, and Classification
    Kadaskar M.
    Patil N.
    SN Computer Science, 4 (5)
  • [23] Deep learning and machine learning in CT-based COPD diagnosis: Systematic review and meta-analysis
    Wu, Qian
    Guo, Hui
    Li, Ruihan
    Han, Jinhuan
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 196
  • [24] Cervical level IIb metastases in squamous cell carcinoma of the oral cavity: a systematic review and meta-analysis
    Kou, Yurong
    Zhao, Tengfei
    Huang, Shaohui
    Liu, Jie
    Duan, Weiyi
    Wang, Yunjing
    Wang, Zechen
    Li, Delong
    Ning, Chunliu
    Sun, Changfu
    ONCOTARGETS AND THERAPY, 2017, 10 : 4475 - 4483
  • [25] Deep learning-based breast cancer diagnosis in breast MRI: systematic review and meta-analysis
    Abdullah, Kamarul Amin
    Marziali, Sara
    Nanaa, Muzna
    Sanchez, Lorena Escudero
    Payne, Nicholas R.
    Gilbert, Fiona J.
    EUROPEAN RADIOLOGY, 2025,
  • [26] Comparison of Immunohistochemical Markers in Oral Submucous Fibrosis and Oral Submucous Fibrosis Transformed to Oral Squamous Cell Carcinoma-A Systematic Review and Meta-Analysis
    Mohapatra, Diksha
    Panda, Swagatika
    Mohanty, Neeta
    Panda, Saurav
    Lewkowicz, Natalia
    Lapinska, Barbara
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (14)
  • [27] An Ensemble Deep Learning Model for Oral Squamous Cell Carcinoma Detection Using Histopathological Image Analysis
    Das, Madhusmita
    Dash, Rasmita
    Kumar Mishra, Sambit
    Kumar Dalai, Asish
    IEEE ACCESS, 2024, 12 : 127185 - 127197
  • [28] Dietary patterns and oesophageal squamous cell carcinoma: a systematic review and meta-analysis
    Liu, X.
    Wang, X.
    Lin, S.
    Yuan, J.
    Yu, I. T-S
    BRITISH JOURNAL OF CANCER, 2014, 110 (11) : 2785 - 2795
  • [29] Deep Learning for Remote Sensing Image Scene Classification: A Review and Meta-Analysis
    Thapa, Aakash
    Horanont, Teerayut
    Neupane, Bipul
    Aryal, Jagannath
    REMOTE SENSING, 2023, 15 (19)
  • [30] Dietary patterns and oesophageal squamous cell carcinoma: a systematic review and meta-analysis
    X Liu
    X Wang
    S Lin
    J Yuan
    I T-S Yu
    British Journal of Cancer, 2014, 110 : 2785 - 2795