Low-velocity impact resistance of the Z-pin reinforced carbon fiber composite laminates

被引:1
|
作者
Wu, Wenyun [1 ]
Guo, Zhangxin [1 ]
Shi, Haolin [1 ]
Niu, Weijing [2 ]
Chai, Gin Boay [3 ]
Li, Yongcun [1 ,4 ,5 ]
机构
[1] Taiyuan Univ Technol, Coll Aeronaut & Astronaut, Taiyuan 030024, Peoples R China
[2] Shanxi Polytech Coll, Dept Mechatron Engn, Taiyuan 030006, Peoples R China
[3] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Nanyang, Singapore
[4] Taiyuan Univ Technol, Shanxi Key Lab Mat Strength & Struct Impact, Taiyuan, Peoples R China
[5] Taiyuan Univ Technol, Natl Demonstrat Ctr Expt Mech Educ, Taiyuan 030024, Peoples R China
关键词
composite laminates; finite element simulation; low-velocity impact; mechanical behavior; Z-pin; DELAMINATION RESISTANCE; PREDICTION;
D O I
10.1002/pc.29066
中图分类号
TB33 [复合材料];
学科分类号
摘要
A voronoi user material subroutine (VUMAT) was developed using the three-dimensional Hashin damage criterion and exponential nonlinear damage evolution method. An interlayer damage model based on the quadratic nominal stress (QUADS) criterion and B-K fracture criterion was introduced, and a finite element model of Z-pin reinforced composite laminates under low-velocity impact was established. The low-velocity impact behavior of Z-pin reinforced composite laminates with different impact velocities (0.6 m/s, 0.4 m/s, and 0.3 m/s), different layup forms ([0 degrees/90 degrees](4) and [0 degrees/45 degrees/90 degrees/-45 degrees](2)), and different Z-pin spacing (4 mm, 8 mm, and 16 mm) was studied using ABAQUS. The results indicate that different layup forms have little effect on the low-velocity impact behavior of Z-pin reinforced composite laminates. The Z-pin spacing has a significant influence on the low-velocity impact behavior of Z-pin reinforced composite laminates. When the impact velocity is 0.4 m/s, the specific energy absorption of composite laminates with Z-pin spacing of 16 mm is 85.93% and 87.7% lower than that of composite laminates with Z-pin spacing of 4 mm and 8 mm. As the Z-pin spacing decreases (Z-pin density increases), the impact resistance of Z-pin reinforced composite laminates first increases and then decreases.
引用
收藏
页码:1699 / 1713
页数:15
相关论文
共 50 条
  • [41] Probability Analysis for Impact Behavior of Composite Laminates Subjected to Low-Velocity Impact
    Ha, Seung-Chul
    Kim, In-Gul
    Lee, Seokje
    Cho, Sang-Gyu
    Jang, Moon-Ho
    Choi, Ik-Hyeon
    COMPOSITES RESEARCH, 2009, 22 (06): : 18 - 22
  • [42] Numerical Simulation of Low-velocity Impact of Composite Laminates with Metal Layers
    Cui J.
    Guo Z.
    Zhu M.
    Li Y.
    Luan Y.
    Yang Q.
    Cailiao Daobao/Materials Reports, 2021, 35 (04): : 04150 - 04158
  • [43] Review and benchmark study on the analysis of low-velocity impact on composite laminates
    Bogenfeld, Raffael
    Kreikemeier, Janko
    Wille, Tobias
    ENGINEERING FAILURE ANALYSIS, 2018, 86 : 72 - 99
  • [44] A comparative study on low-velocity impact response of fabric composite laminates
    Zhang, Diantang
    Sun, Ying
    Chen, Li
    Pan, Ning
    MATERIALS & DESIGN, 2013, 50 : 750 - 756
  • [45] Low-velocity impact response and damage simulation of fiber/magnesium alloy composite laminates
    Zhou X.
    Li K.
    Chen C.
    Chen X.
    2018, Chinese Vibration Engineering Society (37): : 1 - 9
  • [46] Low velocity impact of carbon fiber aluminum laminates
    Yu, Guo-Cai
    Wu, Lin-Zhi
    Ma, Li
    Xiong, Jian
    COMPOSITE STRUCTURES, 2015, 119 : 757 - 766
  • [47] Compression failure behavior of composite laminates with low-velocity impact damage
    Liu J.
    Fan J.-J.
    Wang Y.-Y.
    Hangkong Cailiao Xuebao/Journal of Aeronautical Materials, 2011, 31 (06): : 87 - 91
  • [48] Low Velocity Impact Response of Carbon Fiber Composite Laminates with Surface Glass Fibers
    Xue, Longquan
    Yang, Songze
    He, Zhiquan
    Wang, Rong
    Zheng, Yangyan
    Li, Nian
    Zheng, Kai
    Ren, Yi
    APPLIED COMPOSITE MATERIALS, 2025, 32 (01) : 93 - 117
  • [49] Experimental and simulation study on bonded repaired low-velocity impact of carbon fiber reinforced plastic laminates for rail vehicles
    Chen, Xuanzhen
    Peng, Yong
    Wang, Kui
    Wang, Xin
    Liu, Zhixiang
    Huang, Zhiqiang
    Zhang, Honghao
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 446 - 458
  • [50] The low-velocity impact response of fiber-metal laminates
    Fan, J.
    Cantwell, W. J.
    Guan, Z. W.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2011, 30 (01) : 26 - 35