Low-velocity impact resistance of the Z-pin reinforced carbon fiber composite laminates

被引:1
|
作者
Wu, Wenyun [1 ]
Guo, Zhangxin [1 ]
Shi, Haolin [1 ]
Niu, Weijing [2 ]
Chai, Gin Boay [3 ]
Li, Yongcun [1 ,4 ,5 ]
机构
[1] Taiyuan Univ Technol, Coll Aeronaut & Astronaut, Taiyuan 030024, Peoples R China
[2] Shanxi Polytech Coll, Dept Mechatron Engn, Taiyuan 030006, Peoples R China
[3] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Nanyang, Singapore
[4] Taiyuan Univ Technol, Shanxi Key Lab Mat Strength & Struct Impact, Taiyuan, Peoples R China
[5] Taiyuan Univ Technol, Natl Demonstrat Ctr Expt Mech Educ, Taiyuan 030024, Peoples R China
关键词
composite laminates; finite element simulation; low-velocity impact; mechanical behavior; Z-pin; DELAMINATION RESISTANCE; PREDICTION;
D O I
10.1002/pc.29066
中图分类号
TB33 [复合材料];
学科分类号
摘要
A voronoi user material subroutine (VUMAT) was developed using the three-dimensional Hashin damage criterion and exponential nonlinear damage evolution method. An interlayer damage model based on the quadratic nominal stress (QUADS) criterion and B-K fracture criterion was introduced, and a finite element model of Z-pin reinforced composite laminates under low-velocity impact was established. The low-velocity impact behavior of Z-pin reinforced composite laminates with different impact velocities (0.6 m/s, 0.4 m/s, and 0.3 m/s), different layup forms ([0 degrees/90 degrees](4) and [0 degrees/45 degrees/90 degrees/-45 degrees](2)), and different Z-pin spacing (4 mm, 8 mm, and 16 mm) was studied using ABAQUS. The results indicate that different layup forms have little effect on the low-velocity impact behavior of Z-pin reinforced composite laminates. The Z-pin spacing has a significant influence on the low-velocity impact behavior of Z-pin reinforced composite laminates. When the impact velocity is 0.4 m/s, the specific energy absorption of composite laminates with Z-pin spacing of 16 mm is 85.93% and 87.7% lower than that of composite laminates with Z-pin spacing of 4 mm and 8 mm. As the Z-pin spacing decreases (Z-pin density increases), the impact resistance of Z-pin reinforced composite laminates first increases and then decreases.
引用
收藏
页码:1699 / 1713
页数:15
相关论文
共 50 条
  • [21] Finite Element and Experimental Study of the Fiber-Reinforced Composite Laminates under Low-Velocity Impact
    Liu Hanyang
    Qiu Xinming
    Zhang Dengyu
    He Yuhuai
    Fan Jinjuan
    ADVANCES IN ENGINEERING PLASTICITY XI, 2013, 535-536 : 505 - +
  • [22] Low-velocity impact resistance behaviors of bionic hybrid-helicoidal composite laminates
    Deng, Yabin
    Jiang, Hongyong
    Ren, Yiru
    COMPOSITE STRUCTURES, 2025, 351
  • [23] Electrical and thermal behaviour of Z-pin reinforced carbon-fibre composite laminates under fault currents
    Chen, Mudan
    Zhang, Zhaobo
    Zhang, Bing
    Allegri, Giuliano
    Yuan, Xibo
    Hallett, Stephen R.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2024, 248
  • [24] Influence of flaw on the low-velocity impact resistance performance of glass fiber reinforced aluminum laminates (GLARE)
    Wan Y.
    Yang H.
    Zhou S.
    Zheng Z.
    Chen S.
    Luo W.
    Huang Y.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2020, 41 (07): : 1022 - 1028
  • [25] Bridging Effect and Efficiency of Partly-Cured Z-pin Reinforced Composite Laminates
    Chu Qiyi
    Li Yong
    Xiao Jun
    Huan Dajun
    Zhang Xiangyang
    Transactions of Nanjing University of Aeronautics and Astronautics, 2017, 34 (02) : 177 - 187
  • [26] Delamination prediction in composite laminates under low-velocity impact
    Long, Shuchang
    Yao, Xiaohu
    Zhang, Xiaoqing
    COMPOSITE STRUCTURES, 2015, 132 : 290 - 298
  • [27] Low-velocity multiple impact damage characteristics and numerical simulation of carbon fiber/epoxy composite laminates
    Fang, Lin
    Chu, Yuji
    Zhu, Xueli
    Yu, Mingming
    Xie, Wang
    Ren, Musu
    Sun, Jinliang
    POLYMER COMPOSITES, 2024, 45 (03) : 2517 - 2531
  • [28] Experimental and numerical investigation of the damage propagation in regularly arrayed short fiber reinforced composite laminates under low-velocity impact
    Hu, Junfeng
    Huang, Yinyuan
    Li, Minglong
    Zhang, Siqi
    Lu, Wenlong
    Zhu, Rui
    Yang, Haotian
    Wang, Bowen
    Zhao, Jianping
    Chen, Dingding
    POLYMER COMPOSITES, 2025, 46 (03) : 2616 - 2631
  • [29] Experimental studies of low-velocity impact behavior on hybrid metal wire net/woven carbon-fiber reinforced composite laminates
    Wan, Yun
    Yao, Jian
    Li, Hao
    Huang, Yonghu
    You, Peiyu
    Xu, Yichen
    Lei, Zuxiang
    COMPOSITES COMMUNICATIONS, 2022, 32
  • [30] Low-Velocity Impact and Residual Compression Performance of Carbon Fiber Reinforced Composite Stiffened Plates
    Cui, Jianan
    Yan, Shi
    Zhao, Yun
    Jiang, Lili
    APPLIED COMPOSITE MATERIALS, 2023, 30 (04) : 1185 - 1206