Deep learning based speckle image super-resolution for digital image correlation measurement

被引:2
|
作者
Wang, Lianpo [1 ,2 ]
Lei, Zhaoyang [1 ]
机构
[1] Northwestern Polytech Univ, Sch Software, Xian 710129, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518063, Peoples R China
基金
中国国家自然科学基金;
关键词
Digital image correlation; Image super resolution; Deep learning; Attention mechanism; NETWORK;
D O I
10.1016/j.optlastec.2024.111746
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Digital image correlation (DIC) is a non-contact deformation measurement method based on speckle matching, widely used in experimental mechanics, explosive mechanics, construction measurement and other fields. However, when the DIC method uses a small resolution camera to measure large-sized objects, the resolution of speckle images will decrease. This not only leads to a decrease in the resolution of the measured deformation field, but also reduces the speckle size in the image, resulting in a decrease in measurement accuracy. To improve the resolution of the speckle image, we propose a deep learning-based speckle image super-resolution approach, named Speckle-SRGAN. Speckle-SRGAN is designed based on the high-frequency and fine texture characteristics of speckle images, and it introduces coordinate attention mechanism and global depth residual module to preserve high-frequency and fine textures. Low resolution speckle images are processed by Speckle-SRGAN to transform into high-resolution speckle images with high fidelity. Simulation and experimental results show that Speckle-SRGAN can increase the resolution of speckle image by 4 times and the speckle is smooth without loss of details. The real experiment also shows that using our method to preprocess speckle images can reduce the measurement error of traditional DIC methods by about 0.01 pixels. The code and data of this paper is released at: https://github.com/LianpoWang/ SpeckleSRGAN.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Image Super-resolution Reconstruction based on Deep Learning and Sparse Representation
    Lei, Qian
    Zhang, Zhao-hui
    Hao, Cun-ming
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGY (CNCT 2016), 2016, 54 : 546 - 555
  • [32] Stereo digital image correlation using binocular super-resolution
    Yin, Zhuoyi
    Yuan, Fang
    Tong, Zixiang
    He, Xiaoyuan
    Yang, Fujun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [33] Bayesian Image Super-Resolution With Deep Modeling of Image Statistics
    Gao, Shangqi
    Zhuang, Xiahai
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (02) : 1405 - 1423
  • [34] A Review of Single Image Super-Resolution Reconstruction Based on Deep Learning
    Wu J.
    Ye X.-J.
    Huang F.
    Chen L.-Q.
    Wang Z.-F.
    Liu W.-X.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (09): : 2265 - 2294
  • [35] Deep Convolution Modulation for Image Super-Resolution
    Huang, Yuanfei
    Li, Jie
    Hu, Yanting
    Huang, Hua
    Gao, Xinbo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3647 - 3662
  • [36] The face image super-resolution algorithm based on combined representation learning
    Chen, Yuantao
    Phonevilay, Volachith
    Tao, Jiajun
    Chen, Xi
    Xia, Runlong
    Zhang, Qian
    Yang, Kai
    Xiong, Jie
    Xie, Jingbo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (20) : 30839 - 30861
  • [37] PolSAR image deep learning super-resolution model based on multiscale attention mechanism
    Lin, Liupeng
    Li, Jie
    Shen, Huanfeng
    National Remote Sensing Bulletin, 2024, 28 (09) : 2362 - 2371
  • [38] A Review of Image Super-Resolution Approaches Based on Deep Learning and Applications in Remote Sensing
    Wang, Xuan
    Yi, Jinglei
    Guo, Jian
    Song, Yongchao
    Lyu, Jun
    Xu, Jindong
    Yan, Weiqing
    Zhao, Jindong
    Cai, Qing
    Min, Haigen
    REMOTE SENSING, 2022, 14 (21)
  • [39] Accelerating topology optimization using deep learning-based image super-resolution
    Lim, Jaekyung
    Jung, Kyusoon
    Jung, Youngsuk
    Kim, Do-Nyun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [40] A Systematic Survey of Deep Learning-Based Single-Image Super-Resolution
    Li, Juncheng
    Pei, Zehua
    Li, Wenjie
    Gao, Guangwei
    Wang, Longguang
    Wang, Yingqian
    Zeng, Tieyong
    ACM COMPUTING SURVEYS, 2024, 56 (10)