A novel integrated modeling strategy for predicting damage mechanisms and energy dissipation of composite stiffened structures under low-velocity impact and compression

被引:2
|
作者
Hua, Chunxing [1 ]
Xu, Zhonghai [1 ]
Chen, Dianyu [2 ]
Huang, Mingxuan [1 ]
Cai, Chaocan [1 ]
Qiu, Jiezheng [1 ]
He, Xiaodong [1 ]
机构
[1] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150080, Peoples R China
[2] AVIC Shenyang Aircraft Design & Res Inst, Shenyang 110035, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite stiffened structure; Low-velocity impact; Integrated modeling strategy; Damage mechanism; Energy dissipation; RESIDUAL STRENGTH; LAMINATED COMPOSITES; BEHAVIOR; FAILURE; CFRP; PANELS; EVOLUTION;
D O I
10.1016/j.ast.2024.109454
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Aiming at the limitations of mechanical behavior analysis method of composite structures in multi-model prediction, a novel integrated finite element model containing low-velocity impact (LVI) and compression after impact (CAI) is established, which can effectively simulate the failure mechanism and energy dissipation characteristics of composite stiffened structures under complex working conditions. Firstly, strain-based 3D-Hashin criterion, continuum damage mechanics model and cohesive zone model are used to predict the intra- and inter-laminar damage of composite stiffened structures and are implemented in Abaqus/explicit solver in combined with VUMAT subroutine. Moreover, the reliability of the proposed modeling strategy is verified via various test methods such as the LVI test platform, universal testing machine and digital image correlation technique. Finally, the effects of different impact energies on the mechanical response, failure mechanism, energy dissipation and residual bearing performance of composite stiffened structures with flange edge impact are further revealed. The results show that the deltoid and 0 degrees degrees layups dissipate more energy and accommodate the larger load. Matrix tensile damage and interface debonding are considered to be the main damage modes in composite stiffened structures. The novel integrated modeling strategy not only improves the inefficient transfer of damage information between multiple models but also avoids the shortcomings of the large bias in the prediction results of the equivalent analysis method. This research provides a reference for the application of composite stiffened structures for aerospace in multiple working conditions.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Predicting low-velocity impact damage on a stiffened composite panel
    Faggiani, A.
    Falzon, B. G.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2010, 41 (06) : 737 - 749
  • [2] Stiffened composite plates as equivalent structures for sandwich panels under low-velocity hail impact
    Lalisani, Abdolbaset
    Sadighi, Mojtaba
    Goudarzi, Taha
    Alderliesten, Rene
    Hedayati, Reza
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2025,
  • [3] Low-Velocity Impact and Residual Compression Performance of Carbon Fiber Reinforced Composite Stiffened Plates
    Cui, Jianan
    Yan, Shi
    Zhao, Yun
    Jiang, Lili
    APPLIED COMPOSITE MATERIALS, 2023, 30 (04) : 1185 - 1206
  • [4] THE LOW-VELOCITY IMPACT DAMAGE RESISTANCE OF THE COMPOSITE STRUCTURES - A REVIEW
    Ahmed, Azzam
    Wei, Li
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2015, 40 (02) : 127 - 145
  • [5] Energy dissipation mechanism of fiber metal laminate under low-velocity impact
    Zhang, Jipeng
    Wang, Yue
    Wen, Yang
    Dai, Xiangjun
    Zhao, Yuan
    Fang, Guodong
    THIN-WALLED STRUCTURES, 2023, 183
  • [6] Bridging the low-velocity impact energy versus impact damage and residual compression strength for composite laminates
    Zhang, Di
    Zheng, Xitao
    Zhou, Jin
    Zhang, Wenxuan
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2021, 40 (9-10) : 378 - 390
  • [7] Analysis of selected parameters in numerical modeling of low-velocity impact damage in composite structures
    Danek, Wojciech
    Katunin, Andrzej
    Wronkowicz-Katunin, Angelika
    1ST VIRTUAL CONFERENCE ON STRUCTURAL INTEGRITY (VCSI1), 2020, 25 : 19 - 26
  • [8] Impact resistance and damage mechanisms of CFRP with elastomeric interlayers under low-velocity impacts
    Li, Zhongyu
    Ma, Zhe
    Wang, Chun
    Gu, Yu
    Cong, Songxia
    Wang, Jianfeng
    Wang, Bing
    POLYMER COMPOSITES, 2025,
  • [9] Coupled Analysis of Low-Velocity Impact Damage and Compression after Impact Strength of Composite Laminates
    Borkowski, Luke B.
    Kumar, Rajesh S.
    Palliyaguru, Upul R.
    JOURNAL OF AEROSPACE ENGINEERING, 2021, 34 (05)
  • [10] Influence of various damage mechanisms on the low-velocity impact response of composite laminates
    Zou, Xionghui
    Gao, Weicheng
    Xi, Wei
    POLYMER COMPOSITES, 2024, 45 (01) : 722 - 737