Piezoelectrically driven Fano resonance in silicon photonics

被引:0
|
作者
Ansari, I. [1 ,2 ,3 ]
Feutmba, G. F. [1 ,2 ,3 ]
George, J. P. [1 ,2 ,3 ]
Rijckaert, H. [4 ]
Beeckman, J. [2 ,3 ]
Van Thourhout, D. [1 ,3 ]
机构
[1] Ghent Univ Imec, Dept Informat Technol INTEC, Photon Res Grp, B-9052 Ghent, Belgium
[2] Univ Ghent, Dept Elect & Informat Syst ELIS, Liquid Crystal & Photon Grp, B-9052 Ghent, Belgium
[3] Univ Ghent, Ctr Nano & Biophoton, B-9052 Ghent, Belgium
[4] Univ Ghent, Sol Gel Ctr Res Inorgan Powders & Thin Films, Dept Chem, B-9000 Ghent, Belgium
基金
欧盟地平线“2020”;
关键词
MICRORING RESONATOR; LIGHT; CAVITY;
D O I
10.1063/5.0207482
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Piezoelectric optomechanical platforms provide a promising avenue for efficient signal transduction between microwave and optical domains. Lead zirconate titanate (PZT) thin film stands out as a compelling choice for building such a platform given its high piezoelectricity and optical transparency, enabling strong electro-optomechanical transduction. This work explores the application of such transduction to induce Fano resonance in a silicon photonics integrated circuit (PIC). Our methodology involves integrating a PZT thin film onto a silicon PIC and subsequently removing the SiO2 layer to suspend the silicon waveguide, allowing controlled mechanical vibrations. Fano resonances, characterized by their distinctive asymmetric line shape, were observed at frequencies up to 6.7 GHz with an extinction ratio of 21 dB. A high extinction ratio of 41 dB was achieved at the lower resonance frequency of 223 MHz. Our results demonstrate the potential of piezoelectric thin film integration for the generation of Fano resonances on passive photonic platforms such as Si, paving the way for highly sensitive, compact, and power-efficient devices relevant to a wide range of applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Electrically-driven Acousto-optic Modulators in Silicon Photonics
    Kittlaus, Eric A.
    Jones, William M.
    Rakich, Peter T.
    Otterstrom, Nils T.
    Muller, Richard E.
    Rais-Zadeh, Mina
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [42] Electrically Driven and Thermally Tunable Integrated Optical Isolators for Silicon Photonics
    Huang, Duanni
    Pintus, Paolo
    Zhang, Chong
    Shoji, Yuya
    Mizumoto, Tetsuya
    Bowers, John E.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2016, 22 (06) : 271 - 278
  • [43] Silicon for photonics
    Kimerling, LC
    LIGHT-EMITTING DIODES: RESEARCH, MANUFACTURING, AND APPLICATIONS, 1997, 3002 : 192 - 197
  • [44] SILICON PHOTONICS
    Johnson, Sally Cole
    LASER FOCUS WORLD, 2023, 59 (05): : 11 - 14
  • [45] Silicon photonics
    Liu, AS
    R&D MAGAZINE, 2005, 47 (08): : 28 - 28
  • [46] Silicon photonics
    Jalali, Bahram
    Paniccia, Mario
    Reed, Graham
    IEEE MICROWAVE MAGAZINE, 2006, 7 (03) : 58 - 68
  • [47] Silicon photonics
    Mayer, A. S.
    Kirkpatrick, B. C.
    FRONTIERS IN MODERN OPTICS, 2016, 190 : 189 - 205
  • [48] Silicon Photonics
    Bergman, Keren
    Beausoleil, Ray
    Milojicic, Dejan
    COMPUTER, 2022, 55 (04) : 78 - 81
  • [49] Silicon Photonics
    2010 23RD ANNUAL MEETING OF THE IEEE PHOTONICS SOCIETY, 2010, : 489 - 489
  • [50] Silicon Photonics
    Reed, G. T.
    Mashanovich, G. Z.
    Gardes, F. Y.
    Thomson, D. J.
    Hu, Y.
    Soler-Penades, J.
    Nedeljkovic, M.
    Khokar, A.
    Thomas, P.
    Littlejohns, C.
    Ahmad, A.
    Reynolds, S.
    Topley, R.
    Mitchell, C.
    Stankovic, S.
    Wilson, P. R.
    Ke, L.
    Ben Masaud, T. M.
    Tarazona, A.
    Chong, H.
    2014 7TH INTERNATIONAL SILICON-GERMANIUM TECHNOLOGY AND DEVICE MEETING (ISTDM), 2014, : 5 - 6