All-Cellulose Nanofiber-Based Sustainable Triboelectric Nanogenerators for Enhanced Energy Harvesting

被引:6
作者
Cao, Mengyao [1 ,2 ]
Chen, Yanglei [1 ,2 ]
Sha, Jie [1 ,2 ]
Xu, Yanglei [1 ,2 ]
Chen, Sheng [1 ,2 ,3 ]
Xu, Feng [1 ,2 ]
机构
[1] Beijing Forestry Univ, State Key Lab Efficient Prod Forest Resources, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Beijing Key Lab Lignocellulos Chem, Beijing 100083, Peoples R China
[3] Guangxi Univ, Coll Light Ind & Food Engn Guangxi, Key Lab Clean Pulp & Papermaking & Pollut Control, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
triboelectric nanogenerator; electrospinning; cellulose; nanofiber; fluorinate; energy harvesting;
D O I
10.3390/polym16131784
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Triboelectric nanogenerators (TENGs) show promising potential in energy harvesting and sensing for various electronic devices in multiple fields. However, the majority of materials currently utilized in TENGs are unrenewable, undegradable, and necessitate complex preparation processes, resulting in restricted performance and durability for practical applications. Here, we propose a strategy that combines straightforward chemical modification and electrospinning techniques to construct all-cellulose nanofiber-based TENGs with substantial power output. By using cellulose acetate (CA) as the raw material, the prepared cellulose membranes (CMs) and fluorinated cellulose membranes (FCMs) with different functional groups and hydrophobic properties are applied as the tribopositive and tribonegative friction layers of FCM/CM-based triboelectric nanogenerators (FC-TENGs), respectively. This approach modulates the microstructure and triboelectric polarity of the friction materials in FC-TENGs, thus enhancing their triboelectric charge densities and contact areas. As a result, the assembled FC-TENGs demonstrate enhanced output performance (94 V, 8.5 mu A, and 0.15 W/m2) and exceptional durability in 15,000 cycles. The prepared FC-TENGs with efficient energy harvesting capabilities can be implemented in practical applications to power various electronic devices. Our work strengthens the viability of cellulose-based TENGs for sustainable development and provides novel perspectives on the cost-effective and valuable utilization of cellulose in the future.
引用
收藏
页数:13
相关论文
共 52 条
[1]   Siloxene/PVDF Composite Nanofibrous Membrane for High-Performance Triboelectric Nanogenerator and Self-Powered Static and Dynamic Pressure Sensing Applications [J].
Bhatta, Trilochan ;
Sharma, Sudeep ;
Shrestha, Kumar ;
Shin, Youngdo ;
Seonu, Sookyeong ;
Lee, Sanghyun ;
Kim, Dongkyun ;
Sharifuzzaman, Md ;
Rana, S. M. Sohel ;
Park, Jae Yeong .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (25)
[2]   High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers [J].
Bhatta, Trilochan ;
Maharjan, Pukar ;
Cho, Hyunok ;
Park, Chani ;
Yoon, Sang Hyuk ;
Sharma, Sudeep ;
Salauddin, M. ;
Rahman, M. Toyabur ;
Rana, S. M. Sohel ;
Park, Jae Yeong .
NANO ENERGY, 2021, 81
[3]   Analysis and Experiment of Self-Powered, Pulse-Based Energy Harvester Using 400 V FEP-Based Segmented Triboelectric Nanogenerators and 98.2% Tracking Efficient Power Management IC for Multi-Functional IoT Applications [J].
Chandrarathna, Seneke Chamith ;
Graham, Sontyana Adonijah ;
Ali, Muhammad ;
Ranaweera, Arambewaththe Lekamalage Aruna Kumara ;
Karunarathne, Migara Lakshitha ;
Yu, Jae Su ;
Lee, Jong-Wook .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (17)
[4]   Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views [J].
Chen, Zhonghao ;
Chen, Lin ;
Khoo, Kuan Shiong ;
Gupta, Vijai Kumar ;
Sharma, Minaxi ;
Show, Pau Loke ;
Yap, Pow-Seng .
BIOTECHNOLOGY ADVANCES, 2023, 69
[5]   Theoretical study on the output of contact-separation triboelectric nanogenerators with arbitrary charging and grounding conditions [J].
Chu, Yao ;
Han, Ruixing ;
Meng, Fanyu ;
Cao, Zeyuan ;
Wang, Shiwen ;
Dong, Kangkang ;
Yang, Shuangshuang ;
Liu, Huiliang ;
Ye, Xiongying ;
Tang, Fei .
NANO ENERGY, 2021, 89
[6]   Transparent, Flexible Cellulose Nanofibril-Phosphorene Hybrid Paper as Triboelectric Nanogenerator [J].
Cui, Peng ;
Parida, Kaushik ;
Lin, Meng-Fang ;
Xiong, Jiaqing ;
Cai, Guofa ;
Lee, Pooi See .
ADVANCED MATERIALS INTERFACES, 2017, 4 (22)
[7]   Advances in Green Triboelectric Nanogenerators [J].
Du, Taili ;
Chen, Zhixiang ;
Dong, Fangyang ;
Cai, Hu ;
Zou, Yongjiu ;
Zhang, Yuewen ;
Sun, Peiting ;
Xu, Minyi .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (24)
[8]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[9]   High output polypropylene nanowire array triboelectric nanogenerator through surface structural control and chemical modification [J].
Feng, Yange ;
Zheng, Youbin ;
Ma, Shuanhong ;
Wang, Daoai ;
Zhou, Feng ;
Liu, Weimin .
NANO ENERGY, 2016, 19 :48-57
[10]   Sustainable charged composites with amphiphobic surfaces for harsh environment-tolerant non-contact mode triboelectric nanogenerators [J].
Han, Gi Hyeon ;
Lee, Seung Hyun ;
Gao, Jian ;
Shin, Hee Sup ;
Lee, Jae Won ;
Choi, Kyung Jin ;
Yang, Ya ;
Song, Hyun-Cheol ;
Kim, Yoolkoo ;
Baik, Jeong Min .
NANO ENERGY, 2023, 112