MONODROMY PROBLEM AND TANGENTIAL CENTER-FOCUS PROBLEM FOR PRODUCTS OF LINES IN GENERAL POSITION IN P2

被引:0
作者
Garcia, Daniel Lopez [1 ]
机构
[1] Univ Sao Paulo IME USP, Inst Matemat & Estat, Ruado Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Holomorphic foliations; center problem; monodro- my action; Abelian integral; FOLIATIONS; TOPOLOGY;
D O I
10.17323/1609-4514-2024-24-2-181-199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a rational map F defined by a quotient of products of lines in general position and we study the monodromy problem and the tangential center-focus problem for the fibration associated with F. Thus, we study the submodule of the 1-homology group of a regular fiber of F generated by the orbit of the monodromy action on a vanishing cycle. Moreover, we characterize the meromorphic 1-forms omega in P-2 such that the Abelian integral integral(delta t) omega vanishes on a family of cycles delta(t) around a center singularity.
引用
收藏
页码:181 / 199
页数:19
相关论文
共 24 条
  • [1] MONODROMY GROUP OF UNFOLDING OF ISOLATED SINGULARITIES OF PLANE CURVES I
    ACAMPO, N
    [J]. MATHEMATISCHE ANNALEN, 1975, 213 (01) : 1 - 32
  • [2] Arnold V. I., 1988, Monographs in Mathematics, V83
  • [3] HOLOMORPHIC FOLIATIONS IN CP(2) HAVING AN INVARIANT ALGEBRAIC CURVE
    CERVEAU, D
    NETO, AL
    [J]. ANNALES DE L INSTITUT FOURIER, 1991, 41 (04) : 883 - 903
  • [4] The monodromy problem and the tangential center problem
    Christopher, C.
    Mardesic, P.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (01) : 22 - 35
  • [5] Fritzsche Klaus, 2002, GRAD TEXT M, V213, DOI 10.1007/978-1-4684-9273-6
  • [6] Homology supported in Lagrangian submanifolds in mirror quintic threefolds
    Garcia, Daniel Lopez
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (03): : 709 - 724
  • [7] The monodromy problem for hyperelliptic curves
    Garcia, Daniel Lopez
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 170
  • [8] Petrov modules and zeros of Abelian integrals
    Gavrilov, L
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (08): : 571 - 584
  • [9] The infinitesimal 16th Hilbert problem in dimension zero
    Gavrilov, Lubomir
    Movasati, Hossein
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (03): : 242 - 257
  • [10] Ilyashenko S., 1969, Mat. Sb. (N.S.), V78, P360