MONODROMY PROBLEM AND TANGENTIAL CENTER-FOCUS PROBLEM FOR PRODUCTS OF LINES IN GENERAL POSITION IN P2

被引:0
作者
Garcia, Daniel Lopez [1 ]
机构
[1] Univ Sao Paulo IME USP, Inst Matemat & Estat, Ruado Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Holomorphic foliations; center problem; monodro- my action; Abelian integral; FOLIATIONS; TOPOLOGY;
D O I
10.17323/1609-4514-2024-24-2-181-199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a rational map F defined by a quotient of products of lines in general position and we study the monodromy problem and the tangential center-focus problem for the fibration associated with F. Thus, we study the submodule of the 1-homology group of a regular fiber of F generated by the orbit of the monodromy action on a vanishing cycle. Moreover, we characterize the meromorphic 1-forms omega in P-2 such that the Abelian integral integral(delta t) omega vanishes on a family of cycles delta(t) around a center singularity.
引用
收藏
页码:181 / 199
页数:19
相关论文
共 24 条
[1]   MONODROMY GROUP OF UNFOLDING OF ISOLATED SINGULARITIES OF PLANE CURVES I [J].
ACAMPO, N .
MATHEMATISCHE ANNALEN, 1975, 213 (01) :1-32
[2]  
Arnold V.I., 1988, Monographs in Mathematics
[3]   HOLOMORPHIC FOLIATIONS IN CP(2) HAVING AN INVARIANT ALGEBRAIC CURVE [J].
CERVEAU, D ;
NETO, AL .
ANNALES DE L INSTITUT FOURIER, 1991, 41 (04) :883-903
[4]   The monodromy problem and the tangential center problem [J].
Christopher, C. ;
Mardesic, P. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (01) :22-35
[5]  
Fritzsche Klaus, 2002, Graduate Texts in Mathematics, V213
[6]   Homology supported in Lagrangian submanifolds in mirror quintic threefolds [J].
Garcia, Daniel Lopez .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (03) :709-724
[7]   The monodromy problem for hyperelliptic curves [J].
Garcia, Daniel Lopez .
BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 170
[8]   Petrov modules and zeros of Abelian integrals [J].
Gavrilov, L .
BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (08) :571-584
[9]   The infinitesimal 16th Hilbert problem in dimension zero [J].
Gavrilov, Lubomir ;
Movasati, Hossein .
BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (03) :242-257
[10]  
Ilyashenko S., 1969, Mat. Sb. (N.S.), V78, P360