Prediction of Genetic Biomarkers from RNA-Seq Dataset of Colon Cancer

被引:0
作者
Adeyemi, Tijesunimi [1 ]
Ezekiel, Deborah [1 ]
Diaz, Sergio [2 ]
Sabb, Felix [3 ]
Abdul, Abdullah [4 ]
Nembhard, Fitzroy [5 ]
Paudel, Roshan [1 ]
机构
[1] Morgan State Univ, Dept Comp Sci, Baltimore, MD 21239 USA
[2] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21228 USA
[3] Baltimore Cty Publ Sch, Baltimore, MD USA
[4] Morgan State Univ, Dept Comp Sci, Baltimore, MD 21239 USA
[5] Florida Inst Technol, L3Harris Inst Assured Informat, Melbourne, FL 32901 USA
来源
2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023 | 2023年
关键词
Colorectal cancer; machine learning; gene; biomarkers; HEREDITARY; MUTATION; HMLH1; RISK;
D O I
10.1109/CSCI62032.2023.00226
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study focuses on the critical role of genetic biomarkers in diagnosing, treating, and preventing the development of colon cancer. The identification of these biomarkers enhances the precision of colon cancer diagnosis and classification. Detecting specific genetic mutations makes distinctions among various colon cancer types feasible. Analyzing upregulated and down-regulated genes aids in identifying individuals at higher risk of colon cancer development. Employing a machine learning approach, this research predicts genetic biomarkers linked to colon cancer, revealing LASP1 as an overexpressed and ICA1 as an under-expressed gene. Additionally, the study predicts seven genetic biomarkers associated with colon cancer, including WNT16, MAD1L1, TMEM176A, M6PR, CYP26B1, ICA1, and LASP1
引用
收藏
页码:1378 / 1385
页数:8
相关论文
共 50 条
  • [31] Comparison of RNA-seq and microarray-based models for clinical endpoint prediction
    Zhang, Wenqian
    Yu, Ying
    Hertwig, Falk
    Thierry-Mieg, Jean
    Zhang, Wenwei
    Thierry-Mieg, Danielle
    Wang, Jian
    Furlanello, Cesare
    Devanarayan, Viswanath
    Cheng, Jie
    Deng, Youping
    Hero, Barbara
    Hong, Huixiao
    Jia, Meiwen
    Li, Li
    Lin, Simon M.
    Nikolsky, Yuri
    Oberthuer, Andre
    Qing, Tao
    Su, Zhenqiang
    Volland, Ruth
    Wang, Charles
    Wang, May D.
    Ai, Junmei
    Albanese, Davide
    Asgharzadeh, Shahab
    Avigad, Smadar
    Bao, Wenjun
    Bessarabova, Marina
    Brilliant, Murray H.
    Brors, Benedikt
    Chierici, Marco
    Chu, Tzu-Ming
    Zhang, Jibin
    Grundy, Richard G.
    He, Min Max
    Hebbring, Scott
    Kaufman, Howard L.
    Lababidi, Samir
    Lancashire, Lee J.
    Li, Yan
    Lu, Xin X.
    Luo, Heng
    Ma, Xiwen
    Ning, Baitang
    Noguera, Rosa
    Peifer, Martin
    Phan, John H.
    Roels, Frederik
    Rosswog, Carolina
    GENOME BIOLOGY, 2015, 16
  • [32] 5′RNA-Seq identifies Fhl1 as a genetic modifier in cardiomyopathy
    Christodoulou, Danos C.
    Wakimoto, Hiroko
    Onoue, Kenji
    Eminaga, Seda
    Gorham, Joshua M.
    DePalma, Steve R.
    Herman, Daniel S.
    Teekakirikul, Polakit
    Conner, David A.
    McKean, David M.
    Domenighetti, Andrea A.
    Aboukhalil, Anton
    Chang, Stephen
    Srivastava, Gyan
    McDonough, Barbara
    De Jager, Philip L.
    Chen, Ju
    Bulyk, Martha L.
    Muehlschlege, Jochen D.
    Seidman, Christine E.
    Seidman, J. G.
    JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (03) : 1364 - 1370
  • [33] CAMUR: Knowledge extraction from RNA-seq cancer data through equivalent classification rules
    Cestarelli, Valerio
    Fiscon, Giulia
    Felici, Giovanni
    Bertolazzi, Paola
    Weitschek, Emanuel
    BIOINFORMATICS, 2016, 32 (05) : 697 - 704
  • [34] RNA-Seq Data-Mining Allows the Discovery of Two Long Non-Coding RNA Biomarkers of Viral Infection in Humans
    Barral-Arca, Ruth
    Gomez-Carballa, Alberto
    Cebey-Lopez, Miriam
    Jose Curras-Tuala, Maria
    Pischedda, Sara
    Viz-Lasheras, Sandra
    Bello, Xabier
    Martinon-Torres, Federico
    Salas, Antonio
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (08)
  • [35] Identification of potential long non-coding RNA biomarkers associated with the progression of colon cancer
    Li, Jingwen
    Xue, Weinan
    Lv, Junli
    Han, Peng
    Liu, Yanlong
    Cui, Binbin
    ONCOTARGET, 2017, 8 (44) : 75834 - 75843
  • [36] FRAMA: from RNA-seq data to annotated mRNA assemblies
    Bens, Martin
    Sahm, Arne
    Groth, Marco
    Jahn, Niels
    Morhart, Michaela
    Holtze, Susanne
    Hildebrandt, Thomas B.
    Platzer, Matthias
    Szafranski, Karol
    BMC GENOMICS, 2016, 17
  • [37] Identification of a Cancer Stem Cell-Related Gene Signature in Hepatocellular Carcinoma Based on Single-Cell RNA-Seq and Bulk RNA-Seq Analysis
    Wu, Jing
    Liu, Xu
    Huang, Sheng
    Liu, Wei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (07)
  • [38] Logic programming to infer complex RNA expression patterns from RNA-seq data
    Weirick, Tyler
    Militello, Giuseppe
    Ponomareva, Yuliya
    John, David
    Doring, Claudia
    Dimmeler, Stefanie
    Uchida, Shizuka
    BRIEFINGS IN BIOINFORMATICS, 2018, 19 (02) : 199 - 209
  • [39] Isoform-level microRNA-155 target prediction using RNA-seq
    Deng, Nan
    Puetter, Adriane
    Zhang, Kun
    Johnson, Kristen
    Zhao, Zhiyu
    Taylor, Christopher
    Flemington, Erik K.
    Zhu, Dongxiao
    NUCLEIC ACIDS RESEARCH, 2011, 39 (09) : e61
  • [40] The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing
    Cieslik, Marcin
    Chugh, Rashmi
    Wu, Yi-Mi
    Wu, Ming
    Brennan, Christine
    Lonigro, Robert
    Su, Fengyun
    Wang, Rui
    Siddiqui, Javed
    Mehra, Rohit
    Cao, Xuhong
    Lucas, David
    Chinnaiyan, Arul M.
    Robinson, Dan
    GENOME RESEARCH, 2015, 25 (09) : 1372 - 1381