Transience of continuous-time conservative random walks

被引:0
|
作者
Bhattacharya, Satyaki [1 ,2 ]
Volkov, Stanislav [1 ,2 ]
机构
[1] Lund Univ, Lund, Sweden
[2] Lund Univ, Ctr Math Sci, Box 118, SE-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
Random flight; non-time-homogeneous Markov chain; conservative random walk; transience; recurrence;
D O I
10.1017/jpr.2024.46
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider two continuous-time generalizations of conservative random walks introduced in Englander and Volkov (2022), an orthogonal and a spherically symmetrical one; the latter model is also known as random flights. For both models, we show the transience of the walks when d >= 2 and that the rate of direction changing follows a power law t(-alpha),0 < alpha <= 1, or the law (lnt)(-beta) where beta > 2.
引用
收藏
页码:153 / 171
页数:19
相关论文
共 50 条
  • [31] Global survival of branching random walks and tree-like branching random walks
    Bertacchi, Daniela
    Coletti, Cristian F.
    Zucca, Fabio
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 381 - 402
  • [32] Multidimensional branching random walks in random environment
    Comets, Francis
    Popov, Serguei
    ANNALS OF PROBABILITY, 2007, 35 (01): : 68 - 114
  • [33] Tree builder random walk: Recurrence, transience and ballisticity
    Iacobelli, Giulio
    Ribeiro, Rodrigo
    Valle, Glauco
    Zuaznabar, Leonel
    BERNOULLI, 2022, 28 (01) : 150 - 180
  • [34] Cookie branching random walks
    Bartsch, Christian
    Kochler, Michael
    Kochler, Thomas
    Mueller, Sebastian
    Popov, Serguei
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 323 - 358
  • [35] RANDOM WALKS ON INFINITE TREES
    Anandam, Victor
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 65 (01): : 75 - 82
  • [36] Continuous-time threshold AR(1) processes
    Stramer, O
    Brockwell, PJ
    Tweedie, RL
    ADVANCES IN APPLIED PROBABILITY, 1996, 28 (03) : 728 - 746
  • [37] DETERMINISTICALLY DRIVEN RANDOM WALKS IN A RANDOM ENVIRONMENT ON Z
    Little, Colin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (10) : 5555 - 5578
  • [38] Large deviations for random walks in a random environment on a strip
    Peterson, Jonathon
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 11 (01): : 1 - 41
  • [39] Martingale defocusing and transience of a self-interacting random walk
    Peres, Yuval
    Schapira, Bruno
    Sousi, Perla
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (03): : 1009 - 1022
  • [40] Random Walks on Directed Covers of Graphs
    Gilch, Lorenz A.
    Mueller, Sebastian
    JOURNAL OF THEORETICAL PROBABILITY, 2011, 24 (01) : 118 - 149