4E analysis and multi-objective optimization of a novel multi-generating cycle based on waste heat recovery from solid oxide fuel cell fed by biomass

被引:3
|
作者
Mishamandani, Arian Shabruhi [1 ]
Nejad, Amir Qatarani [1 ]
Shabani, Najmeh [2 ]
Ahmadi, Gholamreza [1 ]
机构
[1] Shahid Beheshti Univ, Fac Mech & Energy Engn, Tehran, Iran
[2] Univ Guilan, Text Dept, Rasht, Iran
关键词
Solid oxide fuel cell; Supercritical CO 2; Transcritical CO 2; Organic Rankine cycle; Reverse osmosis; Thermoelectric generator; ORGANIC RANKINE-CYCLE; HYDROGEN-PRODUCTION; ENERGY-PRODUCTION; POWER-GENERATION; EXERGOENVIRONMENTAL ANALYSES; MULTIGENERATION SYSTEM; THERMODYNAMIC ANALYSIS; DESALINATION SYSTEM; EXERGY ANALYSIS; BRAYTON CYCLE;
D O I
10.1016/j.ref.2024.100610
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present study optimizes a novel developed cycle including solid oxide fuel cell (SOFC) fed by synthesis gas produced from biomass as well as gas turbine (GT), supercritical carbon dioxide cycle (SCO2), transcritical carbon dioxide cycle (TCO2), Organic Rankine Cycle (ORC), thermoelectric generator (TEG), and reverse osmosis (RO)- based desalination. Energy, exergy, exergoeconomic and exergoenvironmental analyses on the developed cycle were investigated. Multi-objective optimization was carried out using of Genetic algorithm using generated power and exergy destruction as objective functions. Sankey diagram data indicate that afterburner holds the highest portion of the total exergy destruction 46.5% (692.24 kW), followed by SOFC which is 20.48% (304.51 kW). Moreover, optimization results showed that the total net power, first and second laws of thermodynamic efficiencies increased by 2.6%, 0.96% and 0.83%, respectively, while exergy destruction decreased by 1%. Furthermore, such a power increase (18.53 kW) using the freshwater produced by RO leads to daily production of 17040 liters of drinking water. According to the exergoeconomic analysis, the minimum flow value pertains to GT at a value of 0.0119 $/GJ, while the TCO2 turbine has the highest value which is 0.2867 $/GJ. The system product cost rate and exergy destruction cost rate reached 27.0353 $/h, and 10.7012 $/h, respectively. In the case of the exergoenvironmental one, the maximum environmental impact is related to the SCO2 turbine 0.0212 Pts/GJ, while SOFC has the lowest (0.0002 Pts/GJ). The system product environmental impact and exergy destruction were achieved at optimum values of 2.7503 $/h, and 4.1576 x10- 7 $/h, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Thermo-economic analysis and multi-objective optimization of a novel waste heat recovery system with a transcritical CO2 cycle for offshore gas turbine application
    Zhang, Qiang
    Ogren, Ryan M.
    Kong, Song-Charng
    ENERGY CONVERSION AND MANAGEMENT, 2018, 172 : 212 - 227
  • [32] Thermodynamic analysis and multi-objective optimization performance of solid oxide fuel cell–Ericsson heat engine–reverse osmosis desalination
    Omolbanin Shakouri
    Mamdouh El Haj Assad
    Emin Açıkkalp
    Journal of Thermal Analysis and Calorimetry, 2021, 145 : 1075 - 1090
  • [33] Towards improvement of waste heat recovery systems: A multi-objective optimization of different organic Rankine cycle configurations
    Laouid Y.A.A.
    Kezrane C.
    Lasbet Y.
    Pesyridis A.
    International Journal of Thermofluids, 2021, 11
  • [34] Multi-objective optimization and 4E analysis of a novel stand-alone LNG production system by employing the machine-learning approach
    Mousavitabar, Seyed Mohammad Ali
    Manesh, Mohammad Hasan Khoshgoftar
    FUEL, 2024, 374
  • [35] Multi-objective optimization of a dual energy-driven solid oxide fuel cell-based power plant
    Cao, Yan
    Dhahad, Hayder A.
    Hussen, Hasanen M.
    Anqi, Ali E.
    Farouk, Naeim
    Parikhani, Towhid
    APPLIED THERMAL ENGINEERING, 2021, 198
  • [36] Design, multi-aspect analyses, and multi-objective optimization of a novel trigeneration system based on geothermal and municipal solid waste energies
    Cuan, Zhangyu
    Chen, Youming
    Kumar, M. Saravana
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 177 : 581 - 597
  • [37] Multi-objective optimization and exergetic analysis of a low-grade waste heat recovery ORC application on a Brazilian FPSO
    Correa Veloso, Thiago Gotelip
    Rodriguez Sotomonte, Cesar Adolfo
    Coronado, Christian J. R.
    Nascimento, Marco A. R.
    ENERGY CONVERSION AND MANAGEMENT, 2018, 174 : 537 - 551
  • [38] Thermodynamic, economic, and environmental analysis and multi-objective optimization of a dual loop organic Rankine cycle for CNG engine waste heat recovery
    Ping, Xu
    Yao, Baofeng
    Zhang, Hongguang
    Yang, Fubin
    APPLIED THERMAL ENGINEERING, 2021, 193
  • [39] Multi-objective optimization and off-design evaluation of organic rankine cycle (ORC) for low-grade waste heat recovery
    Wang, Lingbao
    Bu, Xianbiao
    Li, Huashan
    ENERGY, 2020, 203
  • [40] Integration of direct ammonia protonic ceramic fuel cell with thermoacoustic cycle for waste heat recovery: Performance assessment, influential mechanism and multi-objective optimization
    Han, Yuan
    Gao, Wenzhi
    Qin, Yanzhou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 118 : 356 - 372