4E analysis and multi-objective optimization of a novel multi-generating cycle based on waste heat recovery from solid oxide fuel cell fed by biomass

被引:3
|
作者
Mishamandani, Arian Shabruhi [1 ]
Nejad, Amir Qatarani [1 ]
Shabani, Najmeh [2 ]
Ahmadi, Gholamreza [1 ]
机构
[1] Shahid Beheshti Univ, Fac Mech & Energy Engn, Tehran, Iran
[2] Univ Guilan, Text Dept, Rasht, Iran
关键词
Solid oxide fuel cell; Supercritical CO 2; Transcritical CO 2; Organic Rankine cycle; Reverse osmosis; Thermoelectric generator; ORGANIC RANKINE-CYCLE; HYDROGEN-PRODUCTION; ENERGY-PRODUCTION; POWER-GENERATION; EXERGOENVIRONMENTAL ANALYSES; MULTIGENERATION SYSTEM; THERMODYNAMIC ANALYSIS; DESALINATION SYSTEM; EXERGY ANALYSIS; BRAYTON CYCLE;
D O I
10.1016/j.ref.2024.100610
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present study optimizes a novel developed cycle including solid oxide fuel cell (SOFC) fed by synthesis gas produced from biomass as well as gas turbine (GT), supercritical carbon dioxide cycle (SCO2), transcritical carbon dioxide cycle (TCO2), Organic Rankine Cycle (ORC), thermoelectric generator (TEG), and reverse osmosis (RO)- based desalination. Energy, exergy, exergoeconomic and exergoenvironmental analyses on the developed cycle were investigated. Multi-objective optimization was carried out using of Genetic algorithm using generated power and exergy destruction as objective functions. Sankey diagram data indicate that afterburner holds the highest portion of the total exergy destruction 46.5% (692.24 kW), followed by SOFC which is 20.48% (304.51 kW). Moreover, optimization results showed that the total net power, first and second laws of thermodynamic efficiencies increased by 2.6%, 0.96% and 0.83%, respectively, while exergy destruction decreased by 1%. Furthermore, such a power increase (18.53 kW) using the freshwater produced by RO leads to daily production of 17040 liters of drinking water. According to the exergoeconomic analysis, the minimum flow value pertains to GT at a value of 0.0119 $/GJ, while the TCO2 turbine has the highest value which is 0.2867 $/GJ. The system product cost rate and exergy destruction cost rate reached 27.0353 $/h, and 10.7012 $/h, respectively. In the case of the exergoenvironmental one, the maximum environmental impact is related to the SCO2 turbine 0.0212 Pts/GJ, while SOFC has the lowest (0.0002 Pts/GJ). The system product environmental impact and exergy destruction were achieved at optimum values of 2.7503 $/h, and 4.1576 x10- 7 $/h, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Multi-objective optimization of the carbon dioxide transcritical power cycle with various configurations for engine waste heat recovery
    Tian, Hua
    Chang, Liwen
    Shu, Gequn
    Shi, Lingfeng
    ENERGY CONVERSION AND MANAGEMENT, 2017, 148 : 477 - 488
  • [22] Comparative analysis of supercritical CO2-ORC combined cycle for gas turbine waste heat recovery based on multi-objective optimization
    Hou, Shengya
    Zhang, Fengyuan
    Yang, Qiguo
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [23] Performance Analysis and Multi-Objective Optimization of an Irreversible Solid Oxide Fuel Cell-Stirling Heat Engine Hybrid System
    Chen, Liwei
    Gao, Songhua
    Zhang, Houcheng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2013, 8 (08): : 10772 - 10787
  • [24] Exergoeconomic based multi-objective optimisation of a solid oxide fuel cell system
    Mert, Suha Orcun
    Ozcelik, Zehra
    Dincer, Ibrahim
    INTERNATIONAL JOURNAL OF EXERGY, 2014, 14 (04) : 413 - 429
  • [25] Multi-objective optimization in solid oxide fuel cell for oxidative coupling of methane
    Quddus, Mohammad R.
    Zhang, Yan
    Ray, Ajay K.
    CHEMICAL ENGINEERING JOURNAL, 2010, 165 (02) : 639 - 648
  • [26] Performance analysis and multi-objective optimization of a novel solid oxide fuel cell-based poly-generation and condensation dehumidification system
    Huang, Zihao
    Xiao, Yan
    You, Huailiang
    Chen, Daifen
    Hu, Bin
    Li, Guoxiang
    Han, Jitian
    Lysyakov, Anatoly
    ENERGY CONVERSION AND MANAGEMENT, 2024, 319
  • [27] Performance analysis and multi-objective optimization of organic Rankine cycle for low-grade sinter waste heat recovery
    Feng, Junsheng
    Cheng, Xinni
    Wang, Huanhuan
    Zhao, Liang
    Wang, Haitao
    Dong, Hui
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 53
  • [28] Multi-objective optimization of an innovative fuel cell and biomass power system for hydrogen synthesis and injection using thermochemical cycle
    Fard, Farshad Jabbari
    Houshfar, Ehsan
    Khosravi, Mohammadreza
    Ahmadi, Pouria
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 1523 - 1538
  • [29] Multi-criteria evaluation and optimization of a new multigeneration cycle based on solid oxide fuel cell and biomass fuel integrated with a thermoelectric generator, gas turbine, and methanation cycle
    Wang, Hongliang
    Su, Zhanguo
    Abed, Azher M.
    Nag, Kaushik
    Deifalla, Ahmed
    Marefati, Mohammad
    Mahariq, Ibrahim
    Wei, Yanming
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 170 : 139 - 156
  • [30] 4E optimization comparison of different bottoming systems for waste heat recovery of gas turbine cycles, internal combustion engines, and solid oxide fuel cells in power-hydrogen production systems
    Zoghi, Mohammad
    Hosseinzadeh, Nasser
    Gharaie, Saleh
    Zare, Ali
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 187 : 549 - 580