The difference of weighted composition operators on Fock spaces

被引:0
作者
Yang, Zicong [1 ]
机构
[1] Hebei Univ Technol, Dept Math, Tianjin 300401, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 205卷 / 03期
关键词
Fock space; Weighted composition operator; Difference; DERIVATIVES;
D O I
10.1007/s00605-024-02003-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we solve the open problem posted by Tien and Khoi (Monatsh Math 188:183-193, 2019). We prove that when 0<q<p<infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<p<\infty $$\end{document}, the difference of two weighted composition operators between Fock spaces W psi 1,phi 1-W psi 2,phi 2:Fp -> Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\psi _1,\varphi _1}-W_{\psi _2,\varphi _2}:\mathcal {F}<^>p\rightarrow \mathcal {F}<^>q$$\end{document} is bounded if and only if both W psi 1,phi 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\psi _1,\varphi _1}$$\end{document} and W psi 2,phi 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\psi _2,\varphi _2}$$\end{document} are bounded. Furthermore, we prove that the same conclusion holds for the differences of a weighted composition operator and a weighted composition-differential operator on Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}<^>p$$\end{document}.
引用
收藏
页码:667 / 680
页数:14
相关论文
共 15 条
[1]   Weighted composition operators between large Fock spaces in several complex variables [J].
Arroussi, Hicham ;
Tong, Cezhong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (10) :3436-3466
[2]   Linear sums of two composition operators on the Fock space [J].
Choe, Boo Rim ;
Izuchi, Kou Hei ;
Koo, Hyungwoon .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) :112-119
[3]  
Cowen C. C., 1995, COMPOSITION OPERATOR
[4]   EMBEDDING DERIVATIVES OF FOCK SPACES AND GENERALIZED WEIGHTED COMPOSITION OPERATORS [J].
Hu, Jianhui ;
Li, Songxiao ;
Qu, Dan .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (04) :589-613
[5]   EQUIVALENT NORMS ON FOCK SPACES WITH SOME APPLICATION TO EXTENDED CESARO OPERATORS [J].
Hu, Zhangjian .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (08) :2829-2840
[6]   Toeplitz Operators from One Fock Space to Another [J].
Hu, Zhangjian ;
Lv, Xiaofen .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 70 (04) :541-559
[7]   Weighted composition operators between Fock spaces F∞(C) and Fp(C) [J].
Le Hai Khoi ;
Le Thi Hong Thom ;
Pham Trong Tien .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (03)
[8]   Normal and isometric weighted composition operators on the Fock space [J].
Le, Trieu .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 :847-856
[9]   Compact differences of composition operators [J].
Moorhouse, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 219 (01) :70-92
[10]   Weighted Composition Operators Between Different Fock Spaces [J].
Pham Trong Tien ;
Khoi, Le Hai .
POTENTIAL ANALYSIS, 2019, 50 (02) :171-195