The Hermite-type virtual element method for second order problem

被引:0
作者
Zhao, Jikun [1 ]
Zhou, Fengchen [1 ]
Zhang, Bei [2 ]
Dong, Xiaojing [3 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Henan Univ Technol, Sch Sci, Zhengzhou 450001, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Virtual element method; Hermite-type element; Polygonal mesh; Error analysis;
D O I
10.1016/j.camwa.2024.07.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop the Hermite-type virtual element method to solve the second order problem. A Hermitetype virtual element of degree >= 3 is constructed, which can be taken as an extension of classical Hermite finite element to polygonal meshes. For this virtual element, we rigorously prove some inverse inequalities and the boundedness of basis functions. Further, we prove the interpolation error estimates. Based on a computable H 1- projection, we give the discrete formulation and prove the optimal convergence for the Hermite-type virtual element method. Finally, we show some numerical results to verify the convergence of Hermite-type virtual element. Additionally, compared with other virtual elements, both theoretical analysis and numerical experiments demonstrate that the Hermite-type virtual element has fewer global degrees of freedom and results in significant computational savings.
引用
收藏
页码:70 / 77
页数:8
相关论文
共 30 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]   A Zienkiewicz-type finite element applied to fourth-order problems [J].
Andreev, A. B. ;
Racheva, M. R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (02) :348-357
[3]   The conforming virtual element method for polyharmonic problems [J].
Antonietti, P. F. ;
Manzini, G. ;
Verani, M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (07) :2021-2034
[4]   A stress/displacement Virtual Element method for plane elasticity problems [J].
Artioli, E. ;
de Miranda, S. ;
Lovadina, C. ;
Patruno, L. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 325 :155-174
[5]   Virtual element methods on meshes with small edges or faces [J].
Brenner, Susanne C. ;
Sung, Li-Yeng .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (07) :1291-1336
[6]   Some Estimates for Virtual Element Methods [J].
Brenner, Susanne C. ;
Guan, Qingguang ;
Sung, Li-Yeng .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) :553-574
[7]  
BrennerL Susanne C, 2008, The mathematical theory of finite element methods
[8]   Virtual Element Methods for plate bending problems [J].
Brezzi, Franco ;
Marini, L. Donatella .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 :455-462
[9]   NONCONFORMING VIRTUAL ELEMENT METHOD FOR 2mTH ORDER PARTIAL DIFFERENTIAL EQUATIONS IN Rn [J].
Chen, Long ;
Huang, Xuehai .
MATHEMATICS OF COMPUTATION, 2020, 89 (324) :1711-1744
[10]   Some error analysis on virtual element methods [J].
Chen, Long ;
Huang, Jianguo .
CALCOLO, 2018, 55 (01)