Algebraic network reconstruction of discrete dynamical systems

被引:0
作者
Harrington, Heather A. [1 ,2 ,3 ]
Stillman, Mike [4 ]
Veliz-Cuba, Alan [5 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Tech Univ Dresden, Max Planck Inst Mol Cell Biol & Genet, Ctr Syst Biol Dresden, Dresden, Germany
[3] Tech Univ Dresden, Fac Math, Dresden, Germany
[4] Cornell Univ, Dept Math, Ithaca, NY 14850 USA
[5] Univ Dayton, Dept Math, Dayton, OH USA
基金
英国工程与自然科学研究理事会;
关键词
Algebraic systems biology; Discrete dynamical systems; Network inference; Pseudomonomial ideal; Reverse engineering; Wiring diagrams;
D O I
10.1016/j.aam.2024.102760
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a computational algebra solution to reverse engineering the network structure of discrete dynamical systems from data. We use pseudomonomial ideals to determine dependencies between variables that encode constraints on the possible wiring diagrams underlying the process generating the discrete-time, continuous-space data. Our work assumes that each variable is either monotone increasing or decreasing. We prove that with enough data, even in the presence of small noise, our method can reconstruct the correct unique wiring diagram (c) 2024 Published by Elsevier Inc.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Growth-complexity spectrum of some discrete dynamical systems
    Abarenkova, N
    d'Auriac, JCA
    Boukraa, S
    Maillard, JM
    [J]. PHYSICA D, 1999, 130 (1-2): : 27 - 42
  • [32] An Algebraic Approach to Reverse Engineering Finite Dynamical Systems Arising from Biology
    Veliz-Cuba, Alan
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (01): : 31 - 48
  • [33] A non-trivial relation between some many-dimensional chaotic discrete dynamical systems and some one-dimensional chaotic discrete dynamical systems
    Mazrooei-Sebdani, Reza
    Dehghan, Mehdi
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (09) : 628 - 633
  • [34] The Stability of Fixed Points of Discrete Dynamical Systems in the Space conv Rn
    Slyn'ko, V. I.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2016, 50 (02) : 163 - 165
  • [35] Accelerated stability transformation method for chaos control of discrete dynamical systems
    Yang, Dixiong
    Li, Xiaolan
    Chen, Guohai
    Meng, Zeng
    [J]. NONLINEAR DYNAMICS, 2018, 94 (02) : 1195 - 1213
  • [36] Recursive Identification of Discrete Dynamical Systems with Single Input and Single Output
    Zhukov, A. O.
    [J]. JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2009, 41 (06) : 44 - 57
  • [37] On the global periodicity of discrete dynamical systems and application to rational difference equations
    Rubio-Massegu, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 182 - 189
  • [38] Various notions of chaos for discrete dynamical systems. A brief survey
    Forti G.L.
    [J]. aequationes mathematicae, 2005, 70 (1-2) : 1 - 13
  • [39] Searching for cycles in non-linear autonomous discrete dynamical systems
    Dmitrishin, D.
    Stokolos, A.
    Tohaneanu, M.
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 603 - 626
  • [40] Accelerated stability transformation method for chaos control of discrete dynamical systems
    Dixiong Yang
    Xiaolan Li
    Guohai Chen
    Zeng Meng
    [J]. Nonlinear Dynamics, 2018, 94 : 1195 - 1213