Evolutionary Sequential Transfer Learning for Multi-Objective Feature Selection in Classification

被引:0
|
作者
Lin, Jiabin [1 ]
Chen, Qi [1 ]
Xue, Bing [1 ]
Zhang, Mengjie [1 ]
机构
[1] Victoria Univ Wellington, Ctr Data Sci & Artificial Intelligence, Sch Engn & Comp Sci, Wellington 6140, New Zealand
关键词
Evolutionary multi-objective feature selection; evolutionary transfer learning; knowledge transfer; TRANSFER OPTIMIZATION; ALGORITHM; COMPUTATION;
D O I
10.1109/TETCI.2024.3451709
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the past decades, evolutionary multi-objective algorithms have proven their efficacy in feature selection. Nevertheless, a prevalent approach involves addressing feature selection tasks in isolation, even when these tasks share common knowledge and interdependencies. In response to this, the emerging field of evolutionary sequential transfer learning is gaining attention for feature selection. This novel approach aims to transfer and leverage knowledge gleaned by evolutionary algorithms in a source domain, applying it intelligently to enhance feature selection outcomes in a target domain. Despite its promising potential to exploit shared insights, the adoption of this transfer learning paradigm for feature selection remains surprisingly limited due to the computational expense of existing methods, which learn a mapping between the source and target search spaces. This paper introduces an advanced multi-objective feature selection approach grounded in evolutionary sequential transfer learning, strategically crafted to tackle interconnected feature selection tasks with overlapping features. Our novel framework integrates probabilistic models to capture high-order information within feature selection solutions, successfully tackling the challenges of extracting and preserving knowledge from the source domain without an expensive cost. It also provides a better way to transfer the source knowledge when the feature spaces of the source and target domains diverge. We evaluate our proposed method against four prominent single-task feature selection approaches and a cutting-edge evolutionary transfer learning feature selection method. Through empirical evaluation, our proposed approach showcases superior performance across the majority of datasets, surpassing the effectiveness of the compared methods.
引用
收藏
页码:1019 / 1033
页数:15
相关论文
共 50 条
  • [31] Diversified Sequential Recommendation via Evolutionary Multi-Objective Transfer Optimization
    Zhou, Wei
    Luo, Xiaolong
    Bao, Hongyue
    Zhu, Zexuan
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 456 - 457
  • [32] A bidirectional dynamic grouping multi-objective evolutionary algorithm for feature selection on high-dimensional classification
    Yu, Kunjie
    Sun, Shaoru
    Liang, Jing
    Chen, Ke
    Qu, Boyang
    Yue, Caitong
    Wang, Ling
    INFORMATION SCIENCES, 2023, 648
  • [33] Evolutionary Jaya Algorithm for Parkinson's Disease Diagnosis using Multi-objective Feature Selection in Classification
    Sheth, P. D.
    Patil, S. T.
    2019 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2019,
  • [34] The Comparative Analysis of Single-Objective and Multi-objective Evolutionary Feature Selection Methods
    Ali, Syed Imran
    Lee, Sungyoung
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM) 2019, 2019, 935 : 975 - 985
  • [35] Information preserving multi-objective feature selection for unsupervised learning
    Mierswa, Ingo
    Wurst, Michael
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 1545 - +
  • [36] Fuzzy criteria in multi-objective feature selection for unsupervised learning
    Cai, Fuyu
    Wang, Hao
    Tang, Xiaoqin
    Emmerich, Michael
    Verbeek, Fons J.
    12TH INTERNATIONAL CONFERENCE ON APPLICATION OF FUZZY SYSTEMS AND SOFT COMPUTING, ICAFS 2016, 2016, 102 : 51 - 58
  • [37] Solution Representation Learning in Multi-Objective Transfer Evolutionary Optimization
    Lim, Ray
    Zhou, Lei
    Gupta, Abhishek
    Ong, Yew-Soon
    Zhang, Allan N.
    IEEE ACCESS, 2021, 9 : 41844 - 41860
  • [38] Multi-objective feature selection with NSGA
    Hamdani, Tarek M.
    Won, Jin-Myung
    Alimi, Adel M.
    Karray, Fakhri
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 240 - +
  • [39] Multi-Objective Optimization of Feature Selection Procedure for EEG Signals Classification
    Cimpanu, Corina
    Ferariu, Lavinia
    Dumitriu, Tiberius
    Ungureanu, Florina
    2017 IEEE INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2017, : 434 - 437
  • [40] Binary Multi-Objective Grey Wolf Optimizer for Feature Selection in Classification
    Al-Tashi, Qasem
    Abdulkadir, Said Jadid
    Rais, Helmi Md
    Mirjalili, Seyedali
    Alhussian, Hitham
    Ragab, Mohammed G.
    Alqushaibi, Alawi
    IEEE Access, 2020, 8 : 106247 - 106263