Enhanced acetone gas-sensing properties of NiO-SnO2 nanocomposites

被引:2
|
作者
Ghahremani, Zahra [1 ]
Mirzaei, Ali [1 ]
Kim, Jin-Young [2 ,3 ]
Kim, Hyoun Woo [3 ,4 ]
Kim, Sang Sub [2 ]
机构
[1] Shiraz Univ Technol, Dept Mat Sci & Engn, Shiraz, Iran
[2] Inha Univ, Dept Mat Sci & Engn, Incheon 402751, South Korea
[3] Hanyang Univ, Res Inst Ind Sci, Seoul 133791, South Korea
[4] Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
SnO2; Nanoparticle; NiO; Nanorod; Ethanol; Sensing mechanism; Gas sensor; ONE-POT SYNTHESIS; SENSORS; COMPOSITE; PERFORMANCE; TRANSITION; TOLUENE; FILMS;
D O I
10.1016/j.ceramint.2024.07.243
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study we synthesized NiO-SnO2 nanocomposites with various contents of SnO2 (33, 50, and 66 wt%) and studied their gas-sensing behaviors. Commercial SnO2 and NiO powders with near-spherical morphology and surface areas of 6.80 and 1.47 m(2)/g, respectively, were hydrothermally treated at 175 degrees C for 16 h. Based on transmission electron microscopy observations, morphologies of SnO2 and NiO powders were transformed into nanoparticles (NPs) and nanorods (NRs), respectively. Acetone and ethanol gas-sensing investigations were carried out at various temperatures. At 350 degrees C, a sensor with 66 wt% SnO2 revealed enhanced output to acetone gas. Besides, the sensor exhibited good selectivity for this gas in the presence of interfering gases. This study demonstrated the significant dependence of the sensing characteristics on the chemical composition and the need for composition optimization to achieve the highest sensitivity to the target gas.
引用
收藏
页码:38718 / 38731
页数:14
相关论文
共 50 条
  • [1] Template-free synthesized hollow NiO-SnO2 nanospheres with high gas-sensing performance
    Wang, Lili
    Deng, Jianan
    Fei, Teng
    Zhang, Tong
    SENSORS AND ACTUATORS B-CHEMICAL, 2012, 164 (01) : 90 - 95
  • [2] Enhanced acetone gas-sensing characteristics of Pd-NiO nanorods/SnO2 nanowires sensors
    Hung, Nguyen Phu
    Duy, Nguyen Van
    Xuan, Chu Thi
    Le, Dang Thi Thanh
    Hung, Chu Manh
    Jin, Han
    Hoa, Nguyen Duc
    RSC ADVANCES, 2024, 14 (18) : 12438 - 12448
  • [3] Electrospun nanowebs of NiO/SnO2 p-n heterojunctions for enhanced gas sensing
    Wang, Yun
    Zhang, Hui
    Sun, Xuhui
    APPLIED SURFACE SCIENCE, 2016, 389 : 514 - 520
  • [4] Enhancement Ethanol Sensing Properties of NiO-SnO2 Nanofibers
    Liu, Li
    Li, Shouchun
    Wang, Lianyuan
    Guo, Chuanchang
    Dong, Qiongye
    Li, Wei
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (03) : 771 - 775
  • [5] SnO2 (n)-NiO (p) composite nanowebs: Gas sensing properties and sensing mechanisms
    Kim, Jae-Hun
    Lee, Jae-Hyoung
    Mirzaei, Ali
    Kim, Hyoun Woo
    Kim, Sang Sub
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 258 : 204 - 214
  • [6] Gas sensing properties of NiO/mesoporous SnO2
    Stanoiu, A.
    Somacescu, S.
    Simion, C. E.
    Calderon-Moreno, Jose Maria
    Florea, O. G.
    2017 INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS), 40TH EDITION, 2017, : 93 - 96
  • [7] Synthesis and enhanced acetone gas-sensing performance of ZnSnO3/SnO2 hollow urchin nanostructures
    Lian, Dandan
    Shi, Bing
    Dai, Rongrong
    Jia, Xiaohua
    Wu, Xiangyang
    JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (12)
  • [8] Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties
    Kou, Xueying
    Wang, Chong
    Ding, Mengdi
    Feng, Changhao
    Li, Xin
    Ma, Jian
    Zhang, Hong
    Sun, Yanfeng
    Lu, Geyu
    SENSORS AND ACTUATORS B-CHEMICAL, 2016, 236 : 425 - 432
  • [9] Enhanced BTEX gas-sensing performance of CuO/SnO2 composite
    Ren, Fumin
    Gao, Liping
    Yuan, Yongwei
    Zhang, Yuan
    Alqrni, Ahmed
    Al-Dossary, Omar M.
    Xu, Jiaqiang
    SENSORS AND ACTUATORS B-CHEMICAL, 2016, 223 : 914 - 920
  • [10] Facile synthesis of NiO-SnO2 nanocomposite for enhanced photocatalytic degradation of bismarck brown
    Begum, Shamima
    Mishra, Soumya Ranjan
    Ahmaruzzaman, Md.
    INORGANIC CHEMISTRY COMMUNICATIONS, 2022, 143