SpeciateIT and vSpeciateDB: novel, fast, and accurate per sequence 16S rRNA gene taxonomic classification of vaginal microbiota

被引:1
|
作者
Holm, Johanna B. [1 ]
Gajer, Pawel [1 ]
Ravel, Jacques [1 ]
机构
[1] Univ Maryland, Sch Med, Dept Microbiol & Immunol, Inst Genome Sci, Baltimore, MD 21201 USA
来源
BMC BIOINFORMATICS | 2024年 / 25卷 / 01期
关键词
Amplicon sequencing; Taxonomic classification; Vaginal microbiota; 16S rRNA gene;
D O I
10.1186/s12859-024-05930-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundClustering of sequences into operational taxonomic units (OTUs) and denoising methods are a mainstream stopgap to taxonomically classifying large numbers of 16S rRNA gene sequences. Environment-specific reference databases generally yield optimal taxonomic assignment.ResultsWe developed SpeciateIT, a novel taxonomic classification tool which rapidly and accurately classifies individual amplicon sequences (https://github.com/Ravel-Laboratory/speciateIT). We also present vSpeciateDB, a custom reference database for the taxonomic classification of 16S rRNA gene amplicon sequences from vaginal microbiota. We show that SpeciateIT requires minimal computational resources relative to other algorithms and, when combined with vSpeciateDB, affords accurate species level classification in an environment-specific manner.ConclusionsHerein, two resources with new and practical importance are described. The novel classification algorithm, SpeciateIT, is based on 7th order Markov chain models and allows for fast and accurate per-sequence taxonomic assignments (as little as 10 min for 107 sequences). vSpeciateDB, a meticulously tailored reference database, stands as a vital and pragmatic contribution. Its significance lies in the superiority of this environment-specific database to provide more species-resolution over its universal counterparts.
引用
收藏
页数:9
相关论文
共 18 条
  • [1] Beating Naive Bayes at Taxonomic Classification of 16S rRNA Gene Sequences
    Ziemski, Michal
    Wisanwanichthan, Treepop
    Bokulich, Nicholas A.
    Kaehler, Benjamin D.
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [2] High-throughput sequencing of 16S rRNA gene analysis reveals novel taxonomic diversity among vaginal microbiota in healthy and affected sows with endometritis
    Liang, Huixian
    Cai, Rujian
    Li, Chunling
    Glendon, Ong Hong Ming
    Hu Chengcheng
    Yan, He
    RESEARCH IN VETERINARY SCIENCE, 2022, 143 : 33 - 40
  • [3] Comparison of different hypervariable regions of 16S rRNA for taxonomic profiling of vaginal microbiota using next-generation sequencing
    Sirichoat, Auttawit
    Sankuntaw, Nipaporn
    Engchanil, Chulapan
    Buppasiri, Pranom
    Faksri, Kiatichai
    Namwat, Wises
    Chantratita, Wasun
    Lulitanond, Viraphong
    ARCHIVES OF MICROBIOLOGY, 2021, 203 (03) : 1159 - 1166
  • [4] Comparison of different hypervariable regions of 16S rRNA for taxonomic profiling of vaginal microbiota using next-generation sequencing
    Auttawit Sirichoat
    Nipaporn Sankuntaw
    Chulapan Engchanil
    Pranom Buppasiri
    Kiatichai Faksri
    Wises Namwat
    Wasun Chantratita
    Viraphong Lulitanond
    Archives of Microbiology, 2021, 203 : 1159 - 1166
  • [5] The profiling of microbiota in vaginal swab samples using 16S rRNA gene sequencing and IS-pro analysis
    M. Singer
    R. Koedooder
    M. P. Bos
    L. Poort
    S. Schoenmakers
    P. H. M. Savelkoul
    J. S. E. Laven
    J. D. de Jonge
    S. A. Morré
    A. E. Budding
    BMC Microbiology, 21
  • [6] The profiling of microbiota in vaginal swab samples using 16S rRNA gene sequencing and IS-pro analysis
    Singer, M.
    Koedooder, R.
    Bos, M. P.
    Poort, L.
    Schoenmakers, S.
    Savelkoul, P. H. M.
    Laven, J. S. E.
    de Jonge, J. D.
    Morre, S. A.
    Budding, A. E.
    BMC MICROBIOLOGY, 2021, 21 (01)
  • [7] A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy
    Xiang Gao
    Huaiying Lin
    Kashi Revanna
    Qunfeng Dong
    BMC Bioinformatics, 18
  • [8] A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy
    Gao, Xiang
    Lin, Huaiying
    Revanna, Kashi
    Dong, Qunfeng
    BMC BIOINFORMATICS, 2017, 18
  • [9] Characterization of vaginal microbiota of endometritis and healthy sows using high-throughput pyrosequencing of 16S rRNA gene
    Wang, Jun
    Li, Changjiu
    Nesengani, Lucky T.
    Gong, Yongsheng
    Zhang, Shumin
    Lu, Wenfa
    MICROBIAL PATHOGENESIS, 2017, 111 : 325 - 330
  • [10] The choice of 16S rRNA gene sequence analysis impacted characterization of highly variable surface microbiota in dairy processing environments
    Daly, Sarah E.
    Feng, Jingzhang
    Daeschel, Devin
    Kovac, Jasna
    Snyder, Abigail B.
    MSYSTEMS, 2024, 9 (11)