Three-Dimensional Carbon Nanotubes Buffering Interfacial Stress of the Silicon/Carbon Anodes for Long-Cycle Lithium Storage

被引:11
作者
Li, Hao [1 ,2 ,3 ,4 ]
Yao, Binghua [1 ]
Li, Ming [2 ,3 ,4 ]
Zou, Xingchi [2 ,3 ,4 ]
Duan, Ruixian [2 ,3 ,4 ]
Li, Haoqi [2 ,3 ,4 ]
Jiang, Qinting [2 ,3 ,4 ]
Cao, Guiqiang [2 ,3 ,4 ]
Li, Jun [2 ,3 ,4 ]
Yan, Huanyu [2 ,3 ]
Xu, Na [2 ,3 ,4 ]
Sun, Bo [2 ,3 ,4 ]
Wang, Jingjing [2 ,3 ,4 ]
Li, Xifei [2 ,3 ,4 ,5 ]
机构
[1] Xian Univ Technol, Dept Appl Chem, Xian 710048, Peoples R China
[2] Xian Univ Technol, Inst Adv Electrochem Energy, Xian 710048, Peoples R China
[3] Xian Univ Technol, Sch Mat Sci & Engn, Xian 710048, Peoples R China
[4] Shaanxi Engn Res Ctr Key Mat Lithium Sodium ion B, Xian 710048, Peoples R China
[5] Guangdong Yuanneng Technol Co Ltd, Foshan 528223, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
silicon/graphite anodes; interface buffering strategy; stress concentration; scalable preparation; carbon nanotubes; PERFORMANCE; COMPOSITE; GRAPHITE; GRAPHENE; DESIGN;
D O I
10.1021/acsami.4c09120
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silicon/graphite composites show a high specific capacity and improved cycling stability. However, the intrinsic difference between silicon and graphite, such as unequal volume expansion and lithium-ion diffusion kinetics, causes persistent stress at the silicon/graphite interface and the expansion of the electrical isolation region. Herein, carbon nanotubes (CNTs) were successfully introduced into silicon/carbon composites via ball milling and spray drying, which effectively relieved the stress concentration at the direct contact interface and formed a three-dimensional conductive structure. In addition, CNTs and amorphous carbon acting as "lubricants" further improved the inherent differences between silicon and graphite. As a result, the Si/CNTs/G@C-1 anode increased the cycling performance and rate capability, with a reversible capacity of up to 465 mAh g(-1) after 500 cycles at 1 A g(-1) and superior rate performance of 523 mAh g(-1) at 2 A g(-1). It is believed that this strategy may provide a feasible preparation of large-scale high-content silicon-based nanocomposite anodes in lithium-ion batteries.
引用
收藏
页码:53665 / 53674
页数:10
相关论文
共 55 条
[1]   Mechanofusion-derived Si-alloy/graphite composite electrode materials for Li-ion batteries [J].
Cao, Yidan ;
Hatchard, T. D. ;
Dunlap, R. A. ;
Obrovac, M. N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (14) :8335-8343
[2]   Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Choi, Seong-Hyeon ;
Kim, Namhyung ;
Sung, Jaekyung ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) :110-135
[3]   Polyvinyl alcohol gelation: A structural locking-up agent and carbon source for Si/CNT/C composites as high energy lithium ion battery anode [J].
Chen, Dingqiong ;
Liao, Wenjuan ;
Yang, Yang ;
Zhao, Jinbao .
JOURNAL OF POWER SOURCES, 2016, 315 :236-241
[4]   Silicon nanoparticles encapsulated in multifunctional crosslinked nano-silica/carbon hybrid matrix as a high-performance anode for Li-ion batteries [J].
Dai, Xiaoqian ;
Liu, Huitian ;
Liu, Xu ;
Liu, Zhaolin ;
Liu, Yuansheng ;
Cao, Yuhao ;
Tao, Junyan ;
Shan, Zhongqiang .
CHEMICAL ENGINEERING JOURNAL, 2021, 418
[5]   Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials [J].
Ding, Xuli ;
Liu, XiaoXiao ;
Huang, Yangyang ;
Zhang, Xuefu ;
Zhao, Qianjin ;
Xiang, Xinghua ;
Li, Guolong ;
He, Pengfei ;
Wen, Zhaoyin ;
Li, Ju ;
Huang, Yunhui .
NANO ENERGY, 2016, 27 :647-657
[6]   Toward a fundamental understanding of the heterogeneous multiphysics behaviors of silicon monoxide/graphite composite anodes [J].
Gao, Xiang ;
Li, Suli ;
Xue, Jiachen ;
Hu, Dianyang ;
Xu, Jun .
CARBON ENERGY, 2024, 6 (01)
[7]   Interface engineering of Si-based anodes with fluorinated binder enabling lean-additive lithium-ion batteries [J].
Han, Dong-Yeob ;
Han, Im Kyung ;
Jang, Ho Yeon ;
Kim, Sungho ;
Kwon, Jin Yong ;
Park, Jeyoung ;
Back, Seoin ;
Park, Soojin ;
Ryu, Jaegeon .
ENERGY STORAGE MATERIALS, 2024, 65
[8]   Multilevel carbon architecture of subnanoscopic silicon for fast-charging high-energy-density lithium-ion batteries [J].
Han, Meisheng ;
Mu, Yongbiao ;
Wei, Lei ;
Zeng, Lin ;
Zhao, Tianshou .
CARBON ENERGY, 2024, 6 (04)
[9]   Manipulating charge-transfer kinetics and a flow-domain LiF-rich interphase to enable high-performance microsized silicon-silver-carbon composite anodes for solid-state batteries [J].
Han, Xiang ;
Gu, Lanhui ;
Sun, Zhefei ;
Chen, Minfeng ;
Zhang, Yinggan ;
Luo, Linshan ;
Xu, Min ;
Chen, Songyan ;
Liu, Haodong ;
Wan, Jiayu ;
He, Yan-Bing ;
Chen, Jizhang ;
Zhang, Qiaobao .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (11) :5395-5408
[10]   On the Interface Design of Si and Multilayer Graphene for a High-Performance Li-Ion Battery Anode [J].
Han, Xiang ;
Zhang, Ziqi ;
Chen, Huixin ;
Zhang, Qiaobao ;
Chen, Songyan ;
Yang, Yong .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) :44840-44849