Preparation of nitrogen-doped reduced graphene oxide/zinc ferrite@nitrogen-doped carbon composite for broadband and highly efficient electromagnetic wave absorption

被引:40
|
作者
Shu, Ruiwen [1 ,2 ]
Guan, Yang [1 ]
Liu, Baohua [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Chem & Blasting Engn, Huainan 232001, Peoples R China
[2] Anhui Univ Sci & Technol, Engn Technol Res Ctr Coal Resources Comprehens Uti, Huainan 232001, Anhui, Peoples R China
关键词
Defect engineering; Heterogeneous interface; Nitrogen-doped graphene; Core-shell microsphere; Electromagnetic dissipation; MICROWAVE-ABSORPTION; PERFORMANCE; LIGHTWEIGHT; NANOTUBES;
D O I
10.1016/j.jmst.2024.07.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Traditionally reduced graphene oxide (RGO)-based electromagnetic wave (EMW) absorbing materials have poor absorption effectiveness due to impedance mismatch caused by skin effect. The introduction of structural defects and the design of heterogeneous interfaces play a crucial role in enhancing the polarization effect of EMW absorbers. In this study, nitrogen-doped reduced graphene oxide/zinc ferrite@nitrogen-doped carbon (NRGO/ZnFe2 O4 @NC) ternary composite with rich heterogeneous interfaces is constructed by combining solvothermal reaction, in-situ polymerization, annealing treatment with subsequent hydrothermal reaction. The research results have shown that the obtained NRGO/ZnFe2 O4 @NC ternary composite exhibits a unique core-shell structure and excellent EMW absorption performance. At a thickness of 2.61 mm, the maximum effective absorption bandwidth can reach 7.2 GHz, spanning the entire Ku-band and a portion of the X-band, and the minimum reflection loss is -61.1 dB, which is superior to most reported RGO-based EMW absorbers. The excellent EMW absorbing ability is mainly ascribed to the optimized impedance matching and the enhanced polarization loss caused by the abundant heterogeneous interfaces and structural defects derived from heteroatomic nitrogen doping. Furthermore, the radar cross section in the far field is simulated by a computer simulation technique. This study provides a novel way to prepare core-shell magnetic carbon composites as highly efficient and broadband EMW absorbers. (c) 2024 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:16 / 26
页数:11
相关论文
共 50 条
  • [41] Carbon Nanotube/Nitrogen-Doped Reduced Graphene Oxide Nanocomposites and Their Application in Supercapacitors
    Yang, Chih-Chieh
    Tsai, Meng-Han
    Huang, Chun-Wei
    Yen, Po-Jen
    Pan, Chien-Chung
    Wu, Wen-Wei
    Wei, Kung-Hwa
    Dung, Lan-Rong
    Tseng, Tseung-Yuen
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (08) : 5366 - 5373
  • [42] Preparation of highly oxidized nitrogen-doped carbon nanotubes
    Wei, Jinquan
    Lv, Ruitao
    Guo, Ning
    Wang, Hongguang
    Bai, Xi
    Mathkar, Akshay
    Kang, Feiyu
    Zhu, Hongwei
    Wang, Kunlin
    Wu, Dehai
    Vajtai, Robert
    Ajayan, Pulickel M.
    NANOTECHNOLOGY, 2012, 23 (15)
  • [43] A heterojunction of high-entropy alloy and nitrogen-doped carbon nanospheres for efficient electromagnetic wave absorption
    Zhang, Qin
    Ye, Ying
    Sun, Lei
    Sun, Ping
    Wei, Jie
    Gan, Qi
    JOURNAL OF MATERIALS CHEMISTRY C, 2025, 13 (14) : 7205 - 7218
  • [44] Nitrogen-doped graphene as an alternative to ecotoxic zinc oxide in rubbers
    Glebova, Yulia
    Severin, Nikolai
    Shershnev, Vladimir
    Rabe, Juergen P.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (17)
  • [45] Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors
    Nolan, Hugo
    Mendoza-Sanchez, Beatriz
    Kumar, Nanjundan Ashok
    McEvoy, Niall
    O'Brien, Sean
    Nicolosi, Valeria
    Duesberg, Georg S.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (06) : 2280 - 2284
  • [46] Supercapacitors based on nitrogen-doped reduced graphene oxide and borocarbonitrides
    Gopalakrishnan, K.
    Moses, Kota
    Govindaraj, A.
    Rao, C. N. R.
    SOLID STATE COMMUNICATIONS, 2013, 175 : 43 - 50
  • [47] Cobalt Ferrite Bearing Nitrogen-Doped Reduced Graphene Oxide Layers Spatially Separated with Microporous Carbon as Efficient Oxygen Reduction Electrocatalyst
    Kashyap, Varchaswal
    Singh, Santosh K.
    Kurungot, Sreekumar
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (32) : 20730 - 20740
  • [48] Highly conductive manganese sesquioxide/Nitrogen-doped reduced graphene oxide composite for aqueous rechargeable zinc-ion batteries cathode
    Yu, Hao
    Sun, Junru
    Wang, Zirui
    Ren, Manman
    Yang, Zhizhou
    Liu, Weiliang
    Yao, Jinshui
    Zhang, Changbin
    Zhao, Hui
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2023, : 660 - 668
  • [49] Improved output performance of hybrid composite films with nitrogen-doped reduced graphene oxide
    Ji, Jae-Hoon
    Kim, Bo Su
    Kang, Jihye
    Koh, Jung-Hyuk
    CERAMICS INTERNATIONAL, 2023, 49 (02) : 1615 - 1623
  • [50] Preparation and Characterization of Nitrogen-Doped Reduced Graphene Oxide/Cobalt Tetraoxide Bifunctional Catalyst
    Wang, Yu
    Li, Jin
    Wu, Mao-Qi
    Liu, Hao
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2020, 36 (05) : 802 - 810